562 research outputs found

    Kant's philosophy of the aesthetic and the philosophy of praxis

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2012 Association for Economic and Social Analysis.This essay seeks to reconstruct the terms for a more productive engagement with Kant than is typical within contemporary academic cultural Marxism, which sees him as the cornerstone of a bourgeois model of the aesthetic. The essay argues that, in the Critique of Judgment, the aesthetic stands in as a substitute for the missing realm of human praxis. This argument is developed in relation to Kant's concept of reflective judgment that is in turn related to a methodological shift toward inductive and analogical procedures that help Kant overcome the dualisms of the first two Critiques. This reassessment of Kant's aesthetic is further clarified by comparing it with and offering a critique of Terry Eagleton's assessment of the Kantian aesthetic as synonymous with ideology

    Functional Evolution of Free Quantum Fields

    Get PDF
    We consider the problem of evolving a quantum field between any two (in general, curved) Cauchy surfaces. Classically, this dynamical evolution is represented by a canonical transformation on the phase space for the field theory. We show that this canonical transformation cannot, in general, be unitarily implemented on the Fock space for free quantum fields on flat spacetimes of dimension greater than 2. We do this by considering time evolution of a free Klein-Gordon field on a flat spacetime (with toroidal Cauchy surfaces) starting from a flat initial surface and ending on a generic final surface. The associated Bogolubov transformation is computed; it does not correspond to a unitary transformation on the Fock space. This means that functional evolution of the quantum state as originally envisioned by Tomonaga, Schwinger, and Dirac is not a viable concept. Nevertheless, we demonstrate that functional evolution of the quantum state can be satisfactorily described using the formalism of algebraic quantum field theory. We discuss possible implications of our results for canonical quantum gravity.Comment: 21 pages, RevTeX, minor improvements in exposition, to appear in Classical and Quantum Gravit

    The implications of noninertial motion on covariant quantum spin

    Full text link
    It is shown that the Pauli-Lubanski spin vector defined in terms of curvilinear co-ordinates does not satisfy Lorentz invariance for spin-1/2 particles in noninertial motion along a curved trajectory. The possibility of detecting this violation in muon decay experiments is explored, where the noninertial contribution to the decay rate becomes large for muon beams with large momenta and trajectories with radius of curvature approaching the muon's Compton wavelength scale. A new spacelike spin vector is derived from the Pauli-Lubanski vector that satisfies Lorentz invariance for both inertial and noninertial motion. In addition, this spin vector suggests a generalization for the classification of spin-1/2 particles, and has interesting properties that are applicable for both massive and massless particles.Comment: REVTeX file; 7 pages; 2 figures; slightly revised with new abstract; accepted for publication in Classical and Quantum Gravit

    The Energy Density in the Casimir Effect

    Get PDF
    We compute the expectations of the squares of the electric and magnetic fields in the vacuum region outside a half-space filled with a uniform dispersive dielectric. We find a positive energy density of the electromagnetic field which diverges at the interface despite the inclusion of dispersion in the calculation. We also investigate the mean squared fields and the energy density in the vacuum region between two parallel half-spaces. Of particular interest is the sign of the energy density. We find that the energy density is described by two terms: a negative position independent (Casimir) term, and a positive position dependent term with a minimum value at the center of the vacuum region. We argue that in some cases, including physically realizable ones, the negative term can dominate in a given region between the two half-spaces, so the overall energy density can be negative in this region.Comment: 16 pages, 4 figures; 3 references and some new material in Sect. 4.4 adde

    Two dimensional Sen connections and quasi-local energy-momentum

    Full text link
    The recently constructed two dimensional Sen connection is applied in the problem of quasi-local energy-momentum in general relativity. First it is shown that, because of one of the two 2 dimensional Sen--Witten identities, Penrose's quasi-local charge integral can be expressed as a Nester--Witten integral.Then, to find the appropriate spinor propagation laws to the Nester--Witten integral, all the possible first order linear differential operators that can be constructed only from the irreducible chiral parts of the Sen operator alone are determined and examined. It is only the holomorphy or anti-holomorphy operator that can define acceptable propagation laws. The 2 dimensional Sen connection thus naturally defines a quasi-local energy-momentum, which is precisely that of Dougan and Mason. Then provided the dominant energy condition holds and the 2-sphere S is convex we show that the next statements are equivalent: i. the quasi-local mass (energy-momentum) associated with S is zero; ii.the Cauchy development D(ÎŁ)D(\Sigma) is a pp-wave geometry with pure radiation (D(ÎŁ)D(\Sigma) is flat), where ÎŁ\Sigma is a spacelike hypersurface whose boundary is S; iii. there exist a Sen--constant spinor field (two spinor fields) on S. Thus the pp-wave Cauchy developments can be characterized by the geometry of a two rather than a three dimensional submanifold.Comment: 20 pages, Plain Tex, I

    Total angular momentum from Dirac eigenspinors

    Full text link
    The eigenvalue problem for Dirac operators, constructed from two connections on the spinor bundle over closed spacelike 2-surfaces, is investigated. A class of divergence free vector fields, built from the eigenspinors, are found, which, for the lowest eigenvalue, reproduce the rotation Killing vectors of metric spheres, and provide rotation BMS vector fields at future null infinity. This makes it possible to introduce a well defined, gauge invariant spatial angular momentum at null infinity, which reduces to the standard expression in stationary spacetimes. The general formula for the angular momentum flux carried away be the gravitational radiation is also derived.Comment: 34 pages, typos corrected, four references added, appearing in Class. Quantum Gra

    Molecular Gas in Spiral Galaxies

    Full text link
    In this review, I highlight a number of recent surveys of molecular gas in nearby spiral galaxies. Through such surveys, more complete observations of the distribution and kinematics of molecular gas have become available for galaxies with a wider range of properties (e.g., brightness, Hubble type, strength of spiral or bar structure). These studies show the promise of both interferometers and single-dish telescopes in advancing our general understanding of molecular gas in spiral galaxies. In particular, I highlight the contributions of the recent BIMA Survey of Nearby Galaxies (SONG).Comment: 8 pages, 1 figure. To appear in the proceedings of the 4th Cologne-Bonn-Zermatt-Symposium, "The Dense Interstellar Medium in Galaxies", which was held in Zermatt, Switzerland in September 200

    Carrier capture processes in strain-induced InxGa1-xAs/GaAs quantum dot structures

    Get PDF
    We investigate carrier capture processes in strain-induced quantum dot structures. The quantum dots consist of a near-surface InGaAs/GaAs quantum well in which a lateral confining potential is generated by the strain from InP stressor islands grown on the sample surface. Using photoluminescence spectroscopy, we show that the rate of carrier capture into the quantum dots increases dramatically when the energetic depth of the confinement potential is reduced by enlarging the quantum well/surface separation D. While carriers in the quantum well region between the quantum dots are found to experience D-dependent nonradiative surface recombination, this process seems to be negligible for carriers in the quantum dots, presumably due to the protecting InP islands.Peer reviewe

    Quasi-Local Gravitational Energy

    Full text link
    A dynamically preferred quasi-local definition of gravitational energy is given in terms of the Hamiltonian of a `2+2' formulation of general relativity. The energy is well-defined for any compact orientable spatial 2-surface, and depends on the fundamental forms only. The energy is zero for any surface in flat spacetime, and reduces to the Hawking mass in the absence of shear and twist. For asymptotically flat spacetimes, the energy tends to the Bondi mass at null infinity and the \ADM mass at spatial infinity, taking the limit along a foliation parametrised by area radius. The energy is calculated for the Schwarzschild, Reissner-Nordstr\"om and Robertson-Walker solutions, and for plane waves and colliding plane waves. Energy inequalities are discussed, and for static black holes the irreducible mass is obtained on the horizon. Criteria for an adequate definition of quasi-local energy are discussed.Comment: 16 page
    • …
    corecore