10 research outputs found

    Quality assessment of a serum and xenofree medium for the expansion of human GMP-grade mesenchymal stromal cells

    No full text
    Background Cell-based therapies are emerging as a viable modality to treat challenging diseases, resulting in an increasing demand for their large-scale, high-quality production. Production facilities face the issue of batch-to-batch consistency while producing a safe and efficient cell-based product. Controlling culture conditions and particularly media composition is a key factor of success in this challenge. Serum and Xeno-Free Media (SXFM) represent an interesting option to achieve this goal. By reducing batch to batch variability, they increase Good Manufacturing Practices (GMP)-compliance and safety regarding xenogenic transmission, as compared to fetal bovine serum (FBS) supplemented-media or human platelet lysate supplemented medium. Methods In this study, the isolation, expansion and characteristics including the anti-inflammatory function of human mesenchymal stromal cells (MSC) are compared after culture in MEMα supplemented with human Concentrate Platelet Lysate (hCPL, reference medium) or in MSC-Brew GMP Medium. The latter is a GMP SXFM manufactured in bags under strictly controlled conditions in volumes suitable for expansion to a clinical scale and does not require neither pre-coating of the cell culture units nor the addition of blood derivatives at the isolation step. Results We showed that MSC derived from human bone-marrow and adipose tissue can be successfully isolated and expanded in this SXFM. Number and size of Colony-Forming Unit fibroblast (CFU-F) is increased compared to cells cultivated in hCPL medium. All cells retained a CD90+, CD73+, CD105+, HLADR−, CD34−, CD45− phenotype. Furthermore, the osteogenic and adipocyte potentials as well as the anti-inflammatory activity were comparable between culture conditions. All cells reached the release criteria established in our production facility to treat inflammatory pathologies. Conclusions The use of MSC-Brew GMP Medium can therefore be considered for clinical bioprocesses as a safe and efficient substitute for hCPL media

    Self-sustained actuation from heat dissipation in liquid crystal polymer networks

    Get PDF
    Liquid crystal polymer networks (LCNs) lead the research geared toward macroscopic motion of materials. These actuators are molecularly programed to adapt their shape in response to external stimuli. Non-photo-responsive thin films of LCNs covered with heat absorbers (e.g., graphene or ink) are shown to continuously oscillate when exposed to light. The motion is governed by the heat dissipated at the film surface and the anisotropic thermal deformation of the network. The influence of the LC molecular alignment, the film thickness, and the LC matrix on the macroscopic motion is analyzed to probe the limits of the system. The insights gained from these experiments provide not only guidelines to create actuators by photo-thermal or pure photo-effects but also a simple method to generate mechanical oscillators for soft robotics and automated systems

    Preparation of liquid crystal networks for macroscopic oscillatory motion induced by light

    Get PDF
    \u3cp\u3eA strategy based on doped liquid crystalline networks is described to create mechanical self-sustained oscillations of plastic films under continuous light irradiation. The photo-excitation of dopants that can quickly dissipate light into heat, coupled with anisotropic thermal expansion and self-shadowing of the film, gives rise to the self-sustained deformation. The oscillations observed are influenced by the dimensions and the modulus of the film, and by the directionality and intensity of the light. The system developed offers applications in energy conversion and harvesting for soft-robotics and automated systems. The general method described here consists of creating free-standing liquid crystalline films and characterizing the mechanical and thermal effects observed. The molecular alignment is achieved using alignment layers (rubbed polyimide), commonly used in the display manufacturing industry. To obtain actuators with large deformation, the mesogens are aligned and polymerized in a splay/bend configuration, i.e., with the director of the liquid crystals (LCs) going gradually from planar to homeotropic through the film thickness. Upon irradiation, the mechanical and thermal oscillations obtained are monitored with a high-speed camera. The results are further quantified by image analysis using an image processing program.\u3c/p\u3

    Self-sustained actuation from heat dissipation in liquid crystal polymer networks

    No full text
    \u3cp\u3eLiquid crystal polymer networks (LCNs) lead the research geared toward macroscopic motion of materials. These actuators are molecularly programed to adapt their shape in response to external stimuli. Non-photo-responsive thin films of LCNs covered with heat absorbers (e.g., graphene or ink) are shown to continuously oscillate when exposed to light. The motion is governed by the heat dissipated at the film surface and the anisotropic thermal deformation of the network. The influence of the LC molecular alignment, the film thickness, and the LC matrix on the macroscopic motion is analyzed to probe the limits of the system. The insights gained from these experiments provide not only guidelines to create actuators by photo-thermal or pure photo-effects but also a simple method to generate mechanical oscillators for soft robotics and automated systems.\u3c/p\u3

    A four-blade light-driven plastic mill based on hydrazone liquid-crystal networks

    Get PDF
    \u3cp\u3eThe first light-driven plastic mill is developed, which converts the incoming light directly into a continuous rotation. This device is composed of four blades made of hydrazone-based liquid crystal polymer films able to bend under focused light irradiation and to create a force causing the rotation of the mill. The mechanism of motion originates from the fast photo-thermal isomerization around the C[dbnd]N bond of hydrazones. We show that by accelerating the rate of the thermal Z to E back-isomerization of hydrazones, macroscopic deformation with fast strain rate can be obtained. The rapid motion of the film is the key factor in obtaining the continuous rotatory motion of the mill. These results broaden the range of molecular switches available for macroscopic motion of light-driven organic devices and offer new insights for single-step energy conversion in soft robotics and automated systems.\u3c/p\u3

    A rewritable, reprogrammable, dual light-responsive polymer actuator

    Get PDF
    \u3cp\u3eWe report on the fabrication of a rewritable and reprogrammable dual-photoresponsive liquid crystalline-based actuator containing an azomerocyanine dye that can be locally converted into the hydroxyazopyridinium form by acid treatment. Each dye absorbs at a different wavelength giving access to programmable actuators, the folding of which can be controlled by using different colors of light. The acidic patterning is reversible and allows the erasing and rewriting of patterns in the polymer film, giving access to reusable, adjustable soft actuators.\u3c/p\u3

    Coupled liquid crystalline oscillators in Huygens’ synchrony

    Get PDF
    In the flourishing field of soft robotics, strategies to embody communication and collective motion are scarce. Here we report the synchronized oscillations of thin plastic actuators by an approach reminiscent of the synchronized motion of pendula and metronomes. Two liquid crystalline network oscillators fuelled by light influence the movement of one another and display synchronized oscillations in-phase and anti-phase in a steady state. By observing entrainment between the asymmetric oscillators we demonstrate the existence of coupling between the two actuators. We qualitatively explain the origin of the synchronized motion using a theoretical model and numerical simulations, which suggest that the motion can be tuned by the mechanical properties of the coupling joint. We thus anticipate that the complex synchronization phenomena usually observed in rigid systems can also exist in soft polymeric materials. This enables the use of new stimuli, featuring an example of collective motion by photo-actuation

    Making waves in a photoactive polymer film

    No full text
    \u3cp\u3eOscillating materials that adapt their shapes in response to external stimuli are of interest for emerging applications in medicine and robotics. For example, liquid-crystal networks can be programmed to undergo stimulus-induced deformations in various geometries, including in response to light. Azobenzene molecules are often incorporated into liquid-crystal polymer films to make them photoresponsive; however, in most cases only the bending responses of these films have been studied, and relaxation after photo-isomerization is rather slow. Modifying the core or adding substituents to the azobenzene moiety can lead to marked changes in photophysical and photochemical properties, providing an opportunity to circumvent the use of a complex set-up that involves multiple light sources, lenses or mirrors. Here, by incorporating azobenzene derivatives with fast cis-to-trans thermal relaxation into liquid-crystal networks, we generate photoactive polymer films that exhibit continuous, directional, macroscopic mechanical waves under constant light illumination, with a feedback loop that is driven by self-shadowing. We explain the mechanism of wave generation using a theoretical model and numerical simulations, which show good qualitative agreement with our experiments. We also demonstrate the potential application of our photoactive films in light-driven locomotion and self-cleaning surfaces, and anticipate further applications in fields such as photomechanical energy harvesting and miniaturized transport.\u3c/p\u3

    Human thymopoiesis produces polyspecific CD8+ α/β T cells responding to multiple viral antigens

    No full text
    T-cell receptors (TCRs) are formed by stochastic gene rearrangements, theoretically generating >1019 sequences. They are selected during thymopoiesis, which releases a repertoire of about 108 unique TCRs per individual. How evolution shaped a process that produces TCRs that can effectively handle a countless and evolving set of infectious agents is a central question of immunology. The paradigm is that a diverse enough repertoire of TCRs should always provide a proper, though rare, specificity for any given need. Expansion of such rare T cells would provide enough fighters for an effective immune response and enough antigen-experienced cells for memory. We show here that human thymopoiesis releases a large population of clustered CD8+ T cells harboring α/β paired TCRs that (i) have high generation probabilities and (ii) a preferential usage of some V and J genes, (iii) which CDR3 are shared between individuals, and (iv) can each bind and be activated by multiple unrelated viral peptides, notably from EBV, CMV, and influenza. These polyspecific T cells may represent a first line of defense that is mobilized in response to infections before a more specific response subsequently ensures viral elimination. Our results support an evolutionary selection of polyspecific α/β TCRs for broad antiviral responses and heterologous immunity

    Making waves in a photoactive polymer film

    No full text
    Oscillating materials that adapt their shapes in response to external stimuli are of interest for emerging applications in medicine and robotics. For example, liquid-crystal networks can be programmed to undergo stimulus-induced deformations in various geometries, including in response to light. Azobenzene molecules are often incorporated into liquid-crystal polymer films to make them photoresponsive; however, in most cases only the bending responses of these films have been studied, and relaxation after photo-isomerization is rather slow. Modifying the core or adding substituents to the azobenzene moiety can lead to marked changes in photophysical and photochemical properties, providing an opportunity to circumvent the use of a complex set-up that involves multiple light sources, lenses or mirrors. Here, by incorporating azobenzene derivatives with fast cis-to-trans thermal relaxation into liquid-crystal networks, we generate photoactive polymer films that exhibit continuous, directional, macroscopic mechanical waves under constant light illumination, with a feedback loop that is driven by self-shadowing. We explain the mechanism of wave generation using a theoretical model and numerical simulations, which show good qualitative agreement with our experiments. We also demonstrate the potential application of our photoactive films in light-driven locomotion and self-cleaning surfaces, and anticipate further applications in fields such as photomechanical energy harvesting and miniaturized transport
    corecore