4 research outputs found

    An overview on how cumulus cells interact with the oocyte in a condition with elevated NEFA levels in dairy cows

    No full text
    Metabolic stress in humans and animals is associated with impaired fertility. A major characteristic of metabolic stress is elevated levels of free fatty acids (NEFAs) in blood due to mobilization of body fat reserves. Dairy cows undergo a period of metabolic stress during the peri-calving period, the so-called negative energy balance (NEB) in the early weeks postpartum. At the time of NEB, both saturated and unsaturated NEFAs are mobilized to serve as an alternative energy supply for cells, however in particular saturated NEFAs can have a detrimental effect on somatic cells. Circulating NEFAs are also reflected in the follicular fluid of ovarian follicles and hence reach the cumulus-oocyte-complex (COC), which implies a potential risk for the developing oocyte. To this end, the current review focusses on the impact of NEFAs on the quality of the oocyte

    An overview on how cumulus cells interact with the oocyte in a condition with elevated NEFA levels in dairy cows

    No full text
    Metabolic stress in humans and animals is associated with impaired fertility. A major characteristic of metabolic stress is elevated levels of free fatty acids (NEFAs) in blood due to mobilization of body fat reserves. Dairy cows undergo a period of metabolic stress during the peri-calving period, the so-called negative energy balance (NEB) in the early weeks postpartum. At the time of NEB, both saturated and unsaturated NEFAs are mobilized to serve as an alternative energy supply for cells, however in particular saturated NEFAs can have a detrimental effect on somatic cells. Circulating NEFAs are also reflected in the follicular fluid of ovarian follicles and hence reach the cumulus-oocyte-complex (COC), which implies a potential risk for the developing oocyte. To this end, the current review focusses on the impact of NEFAs on the quality of the oocyte

    Sarcosin (Krp1) in skeletal muscle differentiation: gene expression profiling and knockdown experiments

    No full text
    SARCOSIN, also named Krp1, has been identified as a protein exclusively expressed in striated muscle tissue. Here we report on the role of SARCOSIN in skeletal muscle development and differentiation. We demonstrate, by means of whole-mount in situ hybridization, that Sarcosin mRNA is expressed in the myotome part of the mature somites in mouse embryos from embryonic day 9.5 onwards. Sarcosin is not expressed in the developing heart at these embryonic stages, and in adult tissues the mRNA expression levels are five times lower in the heart than in skeletal muscle. SARCOSIN protein partially co-localizes with the M-band protein myomesin and between and below laterally fusing myofibrils in adult skeletal muscle tissue. RNA interference mediated knock-down of SARCOSIN in the C2C12 myoblast cell line appeared to be stimulatory in the early phase of differentiation, but inhibitory at a later phase of differentiatio
    corecore