10 research outputs found

    Rat cytochromes P450 oxidize 3-aminobenzanthrone, a human metabolite of the carcinogenic environmental pollutant 3-nitrobenzanthrone

    Get PDF
    3-Aminobenzanthrone (3-ABA) is a human metabolite of carcinogenic 3-nitrobenzanthrone (3-NBA), which occurs in diesel exhaust and air pollution. Understanding which cytochrome P450 (CYP) enzymes are involved in metabolic activation and/or detoxication of this toxicant is important in the assessment of an individual's susceptibility to this substance. The aim of this study was to evaluate the efficiency of rat hepatic CYPs to oxidize 3-ABA and to examine the metabolites formed during such an oxidation. The metabolites formed by CYPs in rat hepatic microsomes were separated by high performance liquid chromatography (HPLC). 3-ABA is oxidized by these enzymes to three metabolites, which were separated by HPLC as distinguish product peaks. Using co-chromatography with synthetic standards, two of them were identified to be oxidative metabolites of 3-ABA, N-hydroxy-3-ABA and 3-NBA. The structure of another 3-ABA metabolite remains to be characterized. To define the role of rat hepatic CYP enzymes in metabolism of 3-ABA, we investigated the modulation of its oxidation using different inducers of CYPs for treatment of rats to enrich the liver microsomes with individual CYPs. Based on these studies, we attribute most of 3-ABA oxidation in rat hepatic microsomes to CYP2B, followed by CYP1A, although a role of other hepatic CYPs cannot be ruled out. Inhibition of 3-ABA oxidation by selective inhibitors of individual CYPs, supported this finding

    Cytochrome P450-mediated metabolism of N-(2-methoxyphenyl)-hydroxylamine, a human metabolite of the environmental pollutants and carcinogens o-anisidine and o-nitroanisole

    Get PDF
    N-(2-methoxyphenyl)hydroxylamine is a human metabolite of the industrial and environmental pollutants and bladder carcinogens 2-methoxyaniline (o-anisidine) and 2-methoxynitrobenzene (o-nitroanisole). Here, we investigated the ability of hepatic microsomes from rat and rabbit to metabolize this reactive compound. We found that N-(2-methoxyphenyl)hydroxylamine is metabolized by microsomes of both species mainly to o-aminophenol and a parent carcinogen, o-anisidine, whereas 2-methoxynitrosobenzene (o-nitrosoanisole) is formed as a minor metabolite. Another N-(2-methoxyphenyl)hydroxylamine metabolite, the exact structure of which has not been identified as yet, was generated by hepatic microsomes of rabbits, but its formation by those of rats was negligible. To evaluate the role of rat hepatic microsomal cytochromes P450 (CYP) in N-(2-methoxyphenyl)hydroxylamine metabolism, we investigated the modulation of its metabolism by specific inducers of these enzymes. The results of this study show that rat hepatic CYPs of a 1A subfamily and, to a lesser extent those of a 2B subfamily, catalyze N-(2-methoxyphenyl)hydroxylamine conversion to form both its reductive metabolite, o-anisidine, and o-aminophenol. CYP2E1 is the most efficient enzyme catalyzing conversion of N-(2-methoxyphenyl)hydroxylamine to o-aminophenol

    Benzo[a]pyrene-Induced Genotoxicity in Rats Is Affected by Co-Exposure to Sudan I by Altering the Expression of Biotransformation Enzymes

    No full text
    The environmental pollutant benzo[a]pyrene (BaP) is a human carcinogen that reacts with DNA after metabolic activation catalysed by cytochromes P450 (CYP) 1A1 and 1B1 together with microsomal epoxide hydrolase. The azo dye Sudan I is a potent inducer of CYP1A1/2. Here, Wistar rats were either treated with single doses of BaP (150 mg/kg bw) or Sudan I (50 mg/kg bw) alone or with both compounds in combination to explore BaP-derived DNA adduct formation in vivo. Using 32P-postlabelling, DNA adducts generated by BaP-7,8-dihydrodiol-9,10-epoxide were found in livers of rats treated with BaP alone or co-exposed to Sudan I. During co-exposure to Sudan I prior to BaP treatment, BaP-DNA adduct levels increased 2.1-fold in comparison to BaP treatment alone. Similarly, hepatic microsomes isolated from rats exposed to Sudan I prior to BaP treatment were also the most effective in generating DNA adducts in vitro with the activated metabolites BaP-7,8-dihydrodiol or BaP-9-ol as intermediates. DNA adduct formation correlated with changes in the expression and/or enzyme activities of CYP1A1, 1A2 and 1B1 in hepatic microsomes. Thus, BaP genotoxicity in rats in vivo appears to be related to the enhanced expression and/or activity of hepatic CYP1A1/2 and 1B1 caused by exposure of rats to the studied compounds. Our results indicate that the industrially employed azo dye Sudan I potentiates the genotoxicity of the human carcinogen BaP, and exposure to both substances at the same time seems to be hazardous to humans

    Induction of cytochromes P450 1A1 and 1A2 suppresses formation of DNA adducts by carcinogenic aristolochic acid I in rats in vivo

    Get PDF
    Aristolochic acid I (AAI) is a natural plant alkaloid causing aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. One of the most efficient enzymes reductively activating AAI to species forming AAI-DNA adducts is cytosolic NAD(P)H:quinone oxidoreductase 1. AAI is also either reductively activated or oxidatively detoxified to 8-hydroxyaristolochic acid (AAIa) by microsomal cytochrome P450 (CYP) 1A1 and 1A2. Here, we investigated which of these two opposing CYP1A1/2-catalyzed reactions prevails in AAI metabolism in vivo. The formation of AAI-DNA adducts was analyzed in liver, kidney and lung of rats treated with AAI, Sudan I, a potent inducer of CYP1A1/2, or AAI after pretreatment with Sudan I. Compared to rats treated with AAI alone, levels of AAI-DNA adducts determined by the (32)P-postlabeling method were lower in liver, kidney and lung of rats treated with AAI after Sudan I. The induction of CYP1A1/2 by Sudan I increased AAI detoxification to its O-demethylated metabolite AAIa, thereby reducing the actual amount of AAI available for reductive activation. This subsequently resulted in lower AAI-DNA adduct levels in the rat in vivo. Our results demonstrate that CYP1A1/2-mediated oxidative detoxification of AAI is the predominant role of these enzymes in rats in vivo, thereby suppressing levels of AAI-DNA adducts

    Induced expression of microsomal cytochrome b<sub>5</sub> determined at mRNA and protein levels in rats exposed to ellipticine, benzo[a]pyrene, and 1-phenylazo-2-naphthol (Sudan I)

    Get PDF
    ABSTRACT: The microsomal protein cytochrome b (5), which is located in the membrane of the endoplasmic reticulum, has been shown to modulate many reactions catalyzed by cytochrome P450 (CYP) enzymes. We investigated the influence of exposure to the anticancer drug ellipticine and to two environmental carcinogens, benzo[a]pyrene (BaP) and 1-phenylazo-2-naphthol (Sudan I), on the expression of cytochrome b (5) in livers of rats, both at the mRNA and protein levels. We also studied the effects of these compounds on their own metabolism and the formation of DNA adducts generated by their activation metabolite(s) in vitro. The relative amounts of cytochrome b (5) mRNA, measured by real-time polymerase chain reaction analysis, were induced by the test compounds up to 11.7-fold in rat livers. Western blotting using antibodies raised against cytochrome b (5) showed that protein expression was induced by up to sevenfold in livers of treated rats. Microsomes isolated from livers of exposed rats catalyzed the oxidation of ellipticine, BaP, and Sudan I and the formation of DNA adducts generated by their reactive metabolite(s) more effectively than hepatic microsomes isolated from control rats. All test compounds are known to induce CYP1A1. This induction is one of the reasons responsible for increased oxidation of these xenobiotics by microsomes. However, induction of cytochrome b (5) can also contribute to their enhanced metabolism. GRAPHICAL ABSTRACT: [Image: see text
    corecore