179 research outputs found

    Emerging biological archives can reveal ecological and climatic change in Antarctica

    Get PDF
    Anthropogenic climate change is causing observable changes in Antarctica and the Southern Ocean including increased air and ocean temperatures, glacial melt leading to sea-level rise and a reduction in salinity, and changes to freshwater water availability on land. These changes impact local Antarctic ecosystems and the Earth's climate system. The Antarctic has experienced significant past environmental change, including cycles of glaciation over the Quaternary Period (the past similar to 2.6 million years), Understanding Antarctica's paleoecosystems, and the corresponding paleoenvironments and climates that have shaped them, provides insight into present day ecosystem change, and importantly, helps constrain model projections of future change. Biological archives such as extant moss beds and peat profiles, biological proxies in lake and marine sediments, vertebrate animal colonies, and extant terrestrial and benthic marine invertebrates, complement other Antarctic paleoclimate archives by recording the nature and rate of past ecological change, the paleoenvironmental drivers of that change, and constrain current ecosystem and climate models. These archives provide invaluable information about terrestrial ice-free areas, a key location for Antarctic biodiversity, and the continental margin which is important for understanding ice sheet dynamics. Recent significant advances in analytical techniques (e.g., genomics, biogeochemical analyses) have led to new applications and greater power in elucidating the environmental records contained within biological archives. Paleoecological and paleoclimate discoveries derived from biological archives, and integration with existing data from other paleoclimate data sources, will significantly expand our understanding of past, present, and future ecological change, alongside climate change, in a unique, globally significant region

    Menstrual Justice: A Human Rights Vision for Australia

    Get PDF
    In the past year alone, news reports have shown how menstrual injustice is linked to gender inequality, a lack of economic opportunity, poor health outcomes, and human rights violations. Here is a small sampling of the unjust treatment of women and other people who menstruate: locked bathrooms at schools, inadequate supply of free period products, harmful menstruation-avoidance options for athletes, the human and economic costs of the lack of menstruation and menopause employment leave policies, and the mistreatment of people imprisoned who menstruate. To improve women’s equality, we need menstrual justice. Menstrual justice is the achievement of dignity, liberty and equality for people who menstruate, primarily cis women and girls but also transgender men and boys, genderqueer/nonbinary and intersex persons. On the other hand, menstrual injustice is the oppression of people who menstruate simply because they menstruate, and our society does not yet accept and accommodate menstruation as normal. Menstrual injustices can compound the marginalization of persons already subject to other injustices, including young students, low-income persons, persons with disability, Indigenous persons, persons who are imprisoned, and remote and low-wage workers. We need laws that clearly outlaw workplace discrimination and harassment against menstruators, so no one is fired for bleeding on the job or being late to work due to period pain. We need public awareness campaigns and curricular expansion focused on health information and the eradication of menstrual stigma to curb poor menstrual health. We need access to resources and healthcare for residents in institutional settings that supports their autonomy over menstruation and menopause. We need provision of Indigenous intergenerational teaching about menstruation and menopause. Governments have addressed some of these menstrual injustices. For example, all States and Territories provide free product access in schools. Victoria will be providing free product access in public places. Such initiatives are critical and helpful. But they are isolated and do not tackle important pieces of the equality puzzle. The authors are a group of researchers, activists, and policy makers who have created this set of evidence-based recommendations for governments relating to menstruation and menopause. Our concrete recommendations, entitled “Menstrual Justice: A Human Rights Vision for Australia,” call upon Government to do more to fully address menstrual injustices. Our recommendations include the areas of public awareness, curriculum, schools, workplaces, public buildings and housing, institutional settings and discrimination and coercion. Many of these recommendations are no cost or low cost but could have a large impact on gender equality and would improve human rights for women and other people who menstruate

    Dynamic Ocean Management: Defining and Conceptualizing Real-Time Management of the Ocean

    Get PDF
    Most spatial marine management techniques (e.g., marine protected areas) draw stationary boundaries around often mobile marine features, animals, or resource users. While these approaches can work for relatively stationary marine resources, to be most effective marine management must be as fluid in space and time as the resources and users we aim to manage. Instead, a shift towards dynamic ocean management is suggested, defined as management that rapidly changes in space and time in response to changes in the ocean and its users through the integration of near real-time biological, oceanographic, social and/or economic data. Dynamic management can refine the temporal and spatial scale of managed areas, thereby better balancing ecological and economic objectives. Temperature dependent habitat of a hypothetical mobile marine species was simulated to show the efficiency of dynamic management, finding that 82.0 to 34.2 percent less area needed to be managed using a dynamic approach. Dynamic management further complements existing management by increasing the speed at which decisions are implemented using predefined protocols. With advances in data collection and sharing, particularly in remote sensing, animal tracking, and mobile technology, managers are poised to apply dynamic management across numerous marine sectors. Existing examples demonstrate that dynamic management can successfully allow managers to respond rapidly to changes on-the-water, however to implement dynamic ocean management widely, several gaps must be filled. These include enhancing legal instruments, incorporating ecological and socioeconomic considerations simultaneously, developing ‘out-of-the-box’ platforms to serve dynamic management data to users, and developing applications broadly across additional marine resource sectors

    A Systematically Reduced Mathematical Model for Organoid Expansion

    Get PDF
    Organoids are three-dimensional multicellular tissue constructs. When cultured in vitro, they recapitulate the structure, heterogeneity, and function of their in vivo counterparts. As awareness of the multiple uses of organoids has grown, e.g. in drug discovery and personalised medicine, demand has increased for low-cost and efficient methods of producing them in a reproducible manner and at scale. Here we focus on a bioreactor technology for organoid production, which exploits fluid flow to enhance mass transport to and from the organoids. To ensure large numbers of organoids can be grown within the bioreactor in a reproducible manner, nutrient delivery to, and waste product removal from, the organoids must be carefully controlled. We develop a continuum mathematical model to investigate how mass transport within the bioreactor depends on the inlet flow rate and cell seeding density, focusing on the transport of two key metabolites: glucose and lactate. We exploit the thin geometry of the bioreactor to systematically simplify our model. This significantly reduces the computational cost of generating model solutions, and provides insight into the dominant mass transport mechanisms. We test the validity of the reduced models by comparison with simulations of the full model. We then exploit our reduced mathematical model to determine, for a given inlet flow rate and cell seeding density, the evolution of the spatial metabolite distributions throughout the bioreactor. To assess the bioreactor transport characteristics, we introduce metrics quantifying glucose conversion (the ratio between the total amounts of consumed and supplied glucose), the maximum lactate concentration, the proportion of the bioreactor with intolerable lactate concentrations, and the time when intolerable lactate concentrations are first experienced within the bioreactor. We determine the dependence of these metrics on organoid-line characteristics such as proliferation rate and rate of glucose consumption per cell. Finally, for a given organoid line, we determine how the distribution of metabolites and the associated metrics depend on the inlet flow rate. Insights from this study can be used to inform bioreactor operating conditions, ultimately improving the quality and number of bioreactor-expanded organoids

    Workflow for the generation of expert-derived training and validation data: a view to global scale habitat mapping

    Get PDF
    Our ability to completely and repeatedly map natural environments at a global scale have increased significantly over the past decade. These advances are from delivery of a range of on-line global satellite image archives and global-scale processing capabilities, along with improved spatial and temporal resolution satellite imagery. The ability to accurately train and validate these global scale-mapping programs from what we will call “reference data sets” is challenging due to a lack of coordinated financial and personnel resourcing, and standardized methods to collate reference datasets at global spatial extents. Here, we present an expert-driven approach for generating training and validation data on a global scale, with the view to mapping the world’s coral reefs. Global reefs were first stratified into approximate biogeographic regions, then per region reference data sets were compiled that include existing point data or maps at various levels of accuracy. These reference data sets were compiled from new field surveys, literature review of published surveys, and from individually sourced contributions from the coral reef monitoring and management agencies. Reference data were overlaid on high spatial resolution satellite image mosaics (3.7 m × 3.7 m pixels; Planet Dove) for each region. Additionally, thirty to forty satellite image tiles; 20 km × 20 km) were selected for which reference data and/or expert knowledge was available and which covered a representative range of habitats. The satellite image tiles were segmented into interpretable groups of pixels which were manually labeled with a mapping category via expert interpretation. The labeled segments were used to generate points to train the mapping models, and to validate or assess accuracy. The workflow for desktop reference data creation that we present expands and up-scales traditional approaches of expert-driven interpretation for both manual habitat mapping and map training/validation. We apply the reference data creation methods in the context of global coral reef mapping, though our approach is broadly applicable to any environment. Transparent processes for training and validation are critical for usability as big data provide more opportunities for managers and scientists to use global mapping products for science and conservation of vulnerable and rapidly changing ecosystems

    Sex differences in responses to antiretroviral treatment in South African HIV-infected children on ritonavir-boosted lopinavir- and nevirapine-based treatment

    Get PDF
    Background: While studies of HIV-infected adults on antiretroviral treatment (ART) report no sex differences in immune recovery and virologic response but more ART-associated complications in women, sex differences in disease progression and response to ART among children have not been well assessed. The objective of this study was to evaluate for sex differences in response to ART in South African HIV-infected children who were randomized to continue ritonavir-boosted lopinavir (LPV/r)-based ART or switch to nevirapine-based ART. Methods: ART outcomes in HIV-infected boys and girls in Johannesburg, South Africa from 2005–2010 were compared. Children initiated ritonavir-boosted lopinavir (LPV/r)-based ART before 24 months of age and were randomized to remain on LPV/r or switch to nevirapine-based ART after achieving viral suppression. Children were followed for 76 weeks post-randomization and then long-term follow up continued for a minimum of 99 weeks and maximum of 245 weeks after randomization. Viral load, CD4 count, lipids, anthropometrics, drug concentrations, and adherence were measured at regular intervals. Outcomes were compared between sexes within treatment strata. Results: A total of 323 children (median age 8.8 months, IQR 5.1-13.5), including 168 boys and 155 girls, initiated LPV/r-based ART and 195 children were randomized. No sex differences in risk of virological failure (confirmed viral load >1000 copies/mL) by 156 weeks post-randomization were observed within either treatment group. Girls switched to nevirapine had more robust CD4 count improvement relative to boys in this group through 112 weeks post-randomization. In addition, girls remaining on LPV/r had higher plasma concentrations of ritonavir than boys during post-randomization visits. After a mean of 3.4 years post-randomization, girls remaining on LPV/r also had a higher total cholesterol:HDL ratio and lower mean HDL than boys on LPV/r. Conclusions: Sex differences are noted in treated HIV-infected children even at a young age, and appear to depend on treatment regimen. Future studies are warranted to determine biological mechanisms and clinical significance of these differences. Trial registration: ClinicalTrials.gov Identifier: NCT0011772

    Population pharmacokinetics and pharmacodynamics of Ofloxacin in South African patients with multidrug-resistant tuberculosis.

    Get PDF
    Despite the important role of fluoroquinolones and the predominant use of ofloxacin for treating multidrug-resistant tuberculosis in South Africa, there are limited data on ofloxacin pharmacokinetics in patients with multidrug-resistant tuberculosis, no ofloxacin pharmacokinetic data from South African patients, and no direct assessment of the relationship between ofloxacin pharmacokinetics and the MIC of ofloxacin of patient isolates. Our objectives are to describe ofloxacin pharmacokinetics in South African patients being treated for multidrug-resistant tuberculosis and assess the adequacy of ofloxacin drug exposure with respect to the probability of pharmacodynamic target attainment (area under the time curve/MIC ratio of at least 100). Sixty-five patients with multidrug-resistant tuberculosis were recruited from 2 hospitals in South Africa. We determined the ofloxacin MICs for the Mycobacterium tuberculosis isolates from baseline sputum specimens. Patients received daily doses of 800 mg ofloxacin, in addition to other antitubercular drugs. Patients underwent pharmacokinetic sampling at steady state. NONMEM was used for data analysis. The population pharmacokinetics of ofloxacin in this study has been adequately described. The probability of target attainment expectation in the study population was 0.45. Doubling the dose to 1,600 mg could increase this to only 0.77. The currently recommended ofloxacin dose appeared inadequate for the majority of this study population. Studies to assess the tolerability of higher doses are warranted. Alternatively, ofloxacin should be replaced with more potent fluoroquinolones

    A new conceptual framework for the transformation of groundwater dissolved organic matter

    Get PDF
    Groundwater comprises 95% of the liquid fresh water on Earth and contains a diverse mix of dissolved organic matter (DOM) molecules which play a significant role in the global carbon cycle. Currently, the storage times and degradation pathways of groundwater DOM are unclear, preventing an accurate estimate of groundwater carbon sources and sinks for global carbon budgets. Here we reveal the transformations of DOM in aging groundwater using ultra-high resolution mass spectrometry combined with radiocarbon dating. Long-term anoxia and a lack of photodegradation leads to the removal of oxidised DOM and a build-up of both reduced photodegradable formulae and aerobically biolabile formulae with a strong microbial signal. This contrasts with the degradation pathway of DOM in oxic marine, river, and lake systems. Our findings suggest that processes such as groundwater extraction and subterranean groundwater discharge to oceans could result in up to 13 Tg of highly photolabile and aerobically biolabile groundwater dissolved organic carbon released to surface environments per year, where it can be rapidly degraded. These findings highlight the importance of considering groundwater DOM in global carbon budgets.Ye

    Costs and effects of a 'healthy living' approach to community development in two deprived communities: findings from a mixed methods study

    Get PDF
    Background: Inequalities in health have proved resistant to 'top down' approaches. It is increasingly recognised that health promotion initiatives are unlikely to succeed without strong local involvement at all stages of the process and many programmes now use grass roots approaches. A healthy living approach to community development (HLA) was developed as an innovative response to local concerns about a lack of appropriate services in two deprived communities in Pembrokeshire, West Wales. We sought to assess feasibility, costs, benefits and working relationships of this HLA. Methods: The HLA intervention operated through existing community forums and focused on the whole community and its relationship with statutory and voluntary sectors. Local people were trained as community researchers and gathered views about local needs though resident interviews. Forums used interview results to write action plans, disseminated to commissioning organisations. The process was supported throughout through the project. The evaluation used a multi-method before and after study design including process and outcome formative and summative evaluation; data gathered through documentary evidence, diaries and reflective accounts, semi-structured interviews, focus groups and costing proformas. Main outcome measures were processes and timelines of implementation of HLA; self reported impact on communities and participants; community-agency processes of liaison; costs. Results: Communities were able to produce and disseminate action plans based on locally-identified needs. The process was slower than anticipated: few community changes had occurred but expectations were high. Community participants gained skills and confidence. Cross-sector partnership working developed. The process had credibility within service provider organisations but mechanisms for refocusing commissioning were patchy. Intervention costs averaged ÂŁ58,304 per community per annum. Conclusions: The intervention was feasible and inexpensive, with indications of potential impact at individual, community and policy planning levels. However, it is a long term process which requires sustained investment and must be embedded in planning and service delivery processes.12 page(s
    • …
    corecore