486 research outputs found

    Contribution of Subcortical Structures to Cognition Assessed with Invasive Electrophysiology in Humans

    Get PDF
    Implantation of deep brain stimulation (DBS) electrodes via stereotactic neurosurgery has become a standard procedure for the treatment of Parkinson's disease. More recently, the range of neuropsychiatric conditions and the possible target structures suitable for DBS have greatly increased. The former include obsessive compulsive disease, depression, obesity, tremor, dystonia, Tourette's syndrome and cluster-headache. In this article we argue that several of the target structures for DBS (nucleus accumbens, posterior inferior hypothalamus, nucleus subthalamicus, nuclei in the thalamus, globus pallidus internus, nucleus pedunculopontinus) are located at strategic positions within brain circuits related to motivational behaviors, learning, and motor regulation. Recording from DBS electrodes either during the operation or post-operatively from externalized leads while the patient is performing cognitive tasks tapping the functions of the respective circuits provides a new window on the brain mechanisms underlying these functions. This is exemplified by a study of a patient suffering from obsessive-compulsive disease from whom we recorded in a flanker task designed to assess action monitoring processes while he received a DBS electrode in the right nucleus accumbens. Clear error-related modulations were obtained from the target structure, demonstrating a role of the nucleus accumbens in action monitoring. Based on recent conceptualizations of several different functional loops and on neuroimaging results we suggest further lines of research using this new window on brain functions

    Concurrent Validity, Test-Retest Reliability, and Sensitivity to Change of a Single Body-Fixed Sensor for Gait Analysis during Rollator-Assisted Walking in Acute Geriatric Patients

    Get PDF
    Body-fixed sensor (BFS) technology offers portable, low-cost and easy-to-use alternatives to laboratory-bound equipment for analyzing an individual's gait. Psychometric properties of single BFS systems for gait analysis in older adults who require a rollator for walking are, however, unknown. The study's aim was to evaluate the concurrent validity, test-retest-reliability, and sensitivity to change of a BFS (DynaPort MoveTest; McRoberts B.V., The Hague, The Netherlands) for measuring gait parameters during rollator-assisted walking. Fifty-eight acutely hospitalized older patients equipped with the BFS at the lower back completed a 10 m walkway using a rollator. Concurrent validity was assessed against the Mobility Lab (APDM Inc.; Portland, OR, USA), test-retest reliability over two trials within a 15 min period, and sensitivity to change in patients with improved, stable and worsened 4 m usual gait speed over hospital stay. Bland-Altman plots and intraclass correlation coefficients (ICC) for gait speed, cadence, step length, step time, and walk ratio indicate good to excellent agreement between the BFS and the Mobility Lab (ICC2,1 = 0.87-0.99) and the repeated trials (ICC2,1 = 0.83-0.92). Moderate to large standardized response means were observed in improved (gait speed, cadence, step length, walk ratio: 0.62-0.99) and worsened patients (gait speed, cadence, step time: -0.52 to -0.85), while those in stable patients were trivial to small (all gait parameters: -0.04-0.40). The BFS appears to be a valid, reliable and sensitive instrument for measuring spatio-temporal gait parameters during rollator-assisted walking in geriatric patients

    Characterizing of a Mid-Latitude Ice-Rich Landing Site on Mars to Enable in Situ Habitability Studies

    Get PDF
    We suggest an ice-rich landing site at 188.5E 46.16N within Amazonis Planitia as a candidate location to support a Mars lander mission equipped to study past habitability and regions capable of preserving the physical and chemical signs of life and organic matter. Studies of the ice-rich subsurface on Mars are critical for several reasons. The subsurface environment provides protection from radiation to shield organic and biologic compounds from destruction. The ice-rich substrate is also ideal for preserving organic and biologic molecules and provides a source of H2O for biologic activity. Examination of martian ground ice can test several hypotheses such as: 1) whether ground ice supports habitable conditions, 2) that ground ice can preserve and accumulate organic compounds, and 3) that ice contains biomolecules evident of past or present biological activity on Mars. This Amazonis site, located near the successful Viking Lander 2, shows indirect evidence of subsurface ice (ubiquitous defined polygonal ground, gamma ray spectrometer hydrogen signature, and numerical modeling of ice stability) and direct evidence of exposed subsurface ice. This site also provides surface conditions favorable to a safe landing including no boulders, low rock density, minimal rough topography, and few craters

    Nucleus Accumbens is Involved in Human Action Monitoring: Evidence from Invasive Electrophysiological Recordings

    Get PDF
    The Nucleus accumbens (Nacc) has been proposed to act as a limbic-motor interface. Here, using invasive intraoperative recordings in an awake patient suffering from obsessive-compulsive disease (OCD), we demonstrate that its activity is modulated by the quality of performance of the subject in a choice reaction time task designed to tap action monitoring processes. Action monitoring, that is, error detection and correction, is thought to be supported by a system involving the dopaminergic midbrain, the basal ganglia, and the medial prefrontal cortex. In surface electrophysiological recordings, action monitoring is indexed by an error-related negativity (ERN) appearing time-locked to the erroneous responses and emanating from the medial frontal cortex. In preoperative scalp recordings the patient's ERN was found to be significantly increased compared to a large (n = 83) normal sample, suggesting enhanced action monitoring processes. Intraoperatively, error-related modulations were obtained from the Nacc but not from a site 5 mm above. Importantly, cross-correlation analysis showed that error-related activity in the Nacc preceded surface activity by 40 ms. We propose that the Nacc is involved in action monitoring, possibly by using error signals from the dopaminergic midbrain to adjust the relative impact of limbic and prefrontal inputs on frontal control systems in order to optimize goal-directed behavior

    Water induced sediment levitation enhances downslope transport on Mars

    Get PDF
    On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of (transient) liquid water on the surface. However, water exposed to the martian atmosphere will boil, and the sediment transport capacity of such unstable water is not well understood. Here, we present laboratory studies of a newly recognized transport mechanism: “levitation” of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport where this mechanism is active is about nine times greater than without this effect, reducing the amount of water required to transport comparable sediment volumes by nearly an order of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times longer under reduced martian gravity. Sediment levitation must therefore be considered when evaluating the formation of recent and present-day martian mass wasting features, as much less water may be required to form such features than previously thought

    Gravitino Dark Matter Scenarios with Massive Metastable Charged Sparticles at the LHC

    Get PDF
    We investigate the measurement of supersymmetric particle masses at the LHC in gravitino dark matter (GDM) scenarios where the next-to-lightest supersymmetric partner (NLSP) is the lighter scalar tau, or stau, and is stable on the scale of a detector. Such a massive metastable charged sparticle would have distinctive Time-of-Flight (ToF) and energy-loss (dE/dxdE/dx) signatures. We summarise the documented accuracies expected to be achievable with the ATLAS detector in measurements of the stau mass and its momentum at the LHC. We then use a fast simulation of an LHC detector to demonstrate techniques for reconstructing the cascade decays of supersymmetric particles in GDM scenarios, using a parameterisation of the detector response to staus, taus and jets based on full simulation results. Supersymmetric pair-production events are selected with high redundancy and efficiency, and many valuable measurements can be made starting from stau tracks in the detector. We recalibrate the momenta of taus using transverse-momentum balance, and use kinematic cuts to select combinations of staus, taus, jets and leptons that exhibit peaks in invariant masses that correspond to various heavier sparticle species, with errors often comparable with the jet energy scale uncertainty.Comment: 23 pages, 10 figures, updated to version published in JHE

    Probing for Invisible Higgs Decays with Global Fits

    Full text link
    We demonstrate by performing a global fit on Higgs signal strength data that large invisible branching ratios Br_{inv} for a Standard Model (SM) Higgs particle are currently consistent with the experimental hints of a scalar resonance at the mass scale m_h ~ 124 GeV. For this mass scale, we find Br_{inv} < 0.64 (95 % CL) from a global fit to individual channel signal strengths supplied by ATLAS, CMS and the Tevatron collaborations. Novel tests that can be used to improve the prospects of experimentally discovering the existence of a Br_{inv} with future data are proposed. These tests are based on the combination of all visible channel Higgs signal strengths, and allow us to examine the required reduction in experimental and theoretical errors in this data that would allow a more significantly bounded invisible branching ratio to be experimentally supported. We examine in some detail how our conclusions and method are affected when a scalar resonance at this mass scale has couplings deviating from the SM ones.Comment: 32pp, 15 figures v2: JHEP version, ref added & comment added after Eq.

    Early inpatient rehabilitation for acutely hospitalized older patients: a systematic review of outcome measures

    Get PDF
    Background: Selecting appropriate outcome measures for vulnerable, multimorbid, older patients with acute and chronic impairments poses specific challenges, which may have caused inconsistent findings of previous intervention trials on early inpatient rehabilitation in acutely hospitalized older patients. The aim of this review was to describe primary outcome measures that have been used in randomized controlled trials (RCTs) on early rehabilitation in acutely hospitalized older patients, to analyze their matching, and to evaluate the effects of matching on the main findings of these RCTs. Methods: A systematic literature search was conducted in PubMed, Cochrane CENTRAL, CINAHL, and PEDro databases. Additional studies were identified through reference and citation tracking. Inclusion criteria were: RCT, patients aged ≥65 years, admission to an acute hospital medical ward (but not to an intensive medical care unit), physical exercise intervention (also as part of multidisciplinary programs), and primary outcome measure during hospitalization. Two independent reviewers extracted the data, assessed the methodological quality, and analyzed the matching of primary outcome measures to the intervention, study sample, and setting. Main study findings were related to the results of the matching procedure. Results: Twenty-eight articles reporting on 24 studies were included. A total of 33 different primary outcome measures were identified, which were grouped into six categories: functional status, mobility status, hospital outcomes, adverse clinical events, psychological status, and cognitive functioning. Outcome measures differed considerably within each category and showed a large heterogeneity in their matching to the intervention, study sample, and setting. Outcome measures that specifically matched the intervention contents were more likely to document intervention-induced benefits. Mobility instruments seemed to be the most sensitive outcome measures to reveal such benefits. Conclusions: This review highlights that the selection of outcome measures has to be highly specific to the intervention contents as this is a key factor to reveal benefits attributable to early rehabilitation in acutely hospitalized older patients. Inappropriate selection of outcome measures may represent a major cause of inconsistent findings reported on the effectiveness of early rehabilitation in this setting. Trial registration: PROSPERO CRD42017063978

    Neutron Spectrometer Prospecting in the Mojave Volatiles Project Analog Field Test

    Get PDF
    We know that volatiles are sequestered at the poles of the Moon. While we have evidence of water ice and a number of other compounds based on remote sensing, the detailed distribution, and physical and chemical form are largely unknown. Additional orbital studies of lunar polar volatiles may yield further insights, but the most important next step is to use landed assets to fully characterize the volatile composition and distribution at scales of tens to hundreds of meters. To achieve this range of scales, mobility is needed. Because of the proximity of the Moon, near real-time operation of the surface assets is possible, with an associated reduction in risk and cost. This concept of operations is very different from that of rovers on Mars, and new operational approaches are required to carry out such real-time robotic exploration. The Mojave Volatiles Project (MVP) was a Moon-Mars Analog Mission Activities (MMAMA) program project aimed at (1) determining effective approaches to operating a real-time but short-duration lunar surface robotic mission, and (2) performing prospecting science in a natural setting, as a test of these approaches. Here we describe some results from the first such test, carried out in the Mojave Desert between 16 and 24 October, 2014. The test site was an alluvial fan just E of the Soda Mountains, SW of Baker, California. This site contains desert pavements, ranging from the late Pleistocene to early-Holocene in age. These pavements are undergoing dissection by the ongoing development of washes. A principal objective was to determine the hydration state of different types of desert pavement and bare ground features. The mobility element of the test was provided by the KREX-2 rover, designed and operated by the Intelligent Robotics Group at NASA Ames Research Center. The rover-borne neutron spectrometer measured the neutron albedo at both thermal and epithermal energies. Assuming uniform geochemistry and material bulk density, hydrogen as either hydroxyl/water in mineral assemblages or as moisture will significantly enhance the return of thermalized neutrons. However, in the Mojave test setting there is little uniformity, especially in bulk material density. We find that lighter toned materials (immature pavements, bar and swale, and wash materials) have lower thermal neutron flux, while mature, darker pavements with the greatest desert varnish development have higher neutron fluxes. Preliminary analysis of samples from the various terrain types in the test area indicates a prevailing moisture content of 2-3 wt% H2O. However, soil mineralogy suggests that the welldeveloped Av1 soil horizon beneath the topmost dark pavement clast layer contains the highest clay content. Structural water (including hydroxyl) in these clays may explain the enhanced neutron albedo over dark pavements. On the other hand, surface and subsurface bulk density can also play a role in neutron albedo - lower density of materials found in washes, for example, can result in a reduction in neutron flux. Analysis is ongoing
    corecore