1,697 research outputs found

    Generalized Force Model of Traffic Dynamics

    Full text link
    Floating car data of car-following behavior in cities were compared to existing microsimulation models, after their parameters had been calibrated to the experimental data. With these parameter values, additional simulations have been carried out, e.g. of a moving car which approaches a stopped car. It turned out that, in order to manage such kinds of situations without producing accidents, improved traffic models are needed. Good results have been obtained with the proposed generalized force model.Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.htm

    Structure and Instability of High-Density Equations for Traffic Flow

    Full text link
    Similar to the treatment of dense gases, fluid-dynamic equations for the dynamics of congested vehicular traffic are derived from Enskog-like kinetic equations. These contain additional terms due to the anisotropic vehicle interactions. The calculations are carried out up to Navier-Stokes order. A linear instability analysis indicates an additional kind of instability compared to previous macroscopic traffic models. The relevance for describing granular flows is outlined.Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.htm

    Long-lived states in synchronized traffic flow. Empirical prompt and dynamical trap model

    Full text link
    The present paper proposes a novel interpretation of the widely scattered states (called synchronized traffic) stimulated by Kerner's hypotheses about the existence of a multitude of metastable states in the fundamental diagram. Using single vehicle data collected at the German highway A1, temporal velocity patterns have been analyzed to show a collection of certain fragments with approximately constant velocities and sharp jumps between them. The particular velocity values in these fragments vary in a wide range. In contrast, the flow rate is more or less constant because its fluctuations are mainly due to the discreteness of traffic flow. Subsequently, we develop a model for synchronized traffic that can explain these characteristics. Following previous work (I.A.Lubashevsky, R.Mahnke, Phys. Rev. E v. 62, p. 6082, 2000) the vehicle flow is specified by car density, mean velocity, and additional order parameters hh and aa that are due to the many-particle effects of the vehicle interaction. The parameter hh describes the multilane correlations in the vehicle motion. Together with the car density it determines directly the mean velocity. The parameter aa, in contrast, controls the evolution of hh only. The model assumes that aa fluctuates randomly around the value corresponding to the car configuration optimal for lane changing. When it deviates from this value the lane change is depressed for all cars forming a local cluster. Since exactly the overtaking manoeuvres of these cars cause the order parameter aa to vary, the evolution of the car arrangement becomes frozen for a certain time. In other words, the evolution equations form certain dynamical traps responsible for the long-time correlations in the synchronized mode.Comment: 16 pages, 10 figures, RevTeX

    Cellular Automata Simulating Experimental Properties of Traffic Flows

    Full text link
    A model for 1D traffic flow is developed, which is discrete in space and time. Like the cellular automaton model by Nagel and Schreckenberg [J. Phys. I France 2, 2221 (1992)], it is simple, fast, and can describe stop-and-go traffic. Due to its relation to the optimal velocity model by Bando et al. [Phys. Rev. E 51, 1035 (1995)], its instability mechanism is of deterministic nature. The model can be easily calibrated to empirical data and displays the experimental features of traffic data recently reported by Kerner and Rehborn [Phys. Rev. E 53, R1297 (1996)].Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.html and http://traffic.comphys.uni-duisburg.de/member/home_schreck.htm

    An Agent-Based Approach to Self-Organized Production

    Full text link
    The chapter describes the modeling of a material handling system with the production of individual units in a scheduled order. The units represent the agents in the model and are transported in the system which is abstracted as a directed graph. Since the hindrances of units on their path to the destination can lead to inefficiencies in the production, the blockages of units are to be reduced. Therefore, the units operate in the system by means of local interactions in the conveying elements and indirect interactions based on a measure of possible hindrances. If most of the units behave cooperatively ("socially"), the blockings in the system are reduced. A simulation based on the model shows the collective behavior of the units in the system. The transport processes in the simulation can be compared with the processes in a real plant, which gives conclusions about the consequencies for the production based on the superordinate planning.Comment: For related work see http://www.soms.ethz.c

    Modeling and Simulation of Multi-Lane Traffic Flow

    Full text link
    A most important aspect in the field of traffic modeling is the simulation of bottleneck situations. For their realistic description a macroscopic multi-lane model for uni-directional freeways including acceleration, deceleration, velocity fluctuations, overtaking and lane-changing maneuvers is systematically deduced from a gas-kinetic (Boltzmann-like) approach. The resulting equations contain corrections with respect to previous models. For efficient computer simulations, a reduced model delineating the coarse-grained temporal behavior is derived and applied to bottleneck situations.Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.htm

    Optimal Self-Organization

    Full text link
    We present computational and analytical results indicating that systems of driven entities with repulsive interactions tend to reach an optimal state associated with minimal interaction and minimal dissipation. Using concepts from non-equilibrium thermodynamics and game theoretical ideas, we generalize this finding to an even wider class of self-organizing systems which have the ability to reach a state of maximal overall ``success''. This principle is expected to be relevant for driven systems in physics like sheared granular media, but it is also applicable to biological, social, and economic systems, for which only a limited number of quantitative principles are available yet.Comment: This is the detailled revised version of a preprint on ``Self-Organised Optimality'' (cond-mat/9903319). For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.html and http://angel.elte.hu/~vicsek

    Freezing by Heating in a Driven Mesoscopic System

    Get PDF
    We investigate a simple model corresponding to particles driven in opposite directions and interacting via a repulsive potential. The particles move off-lattice on a periodic strip and are subject to random forces as well. We show that this model - which can be considered as a continuum version of some driven diffusive systems - exhibits a paradoxial, new kind of transition called here ``freezing by heating''. One interesting feature of this transition is that a crystallized state with a higher total energy is obtained from a fluid state by increasing the amount of fluctuations.Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.html and http://angel.elte.hu/~vicsek

    Two-lane traffic rules for cellular automata: A systematic approach

    Full text link
    Microscopic modeling of multi-lane traffic is usually done by applying heuristic lane changing rules, and often with unsatisfying results. Recently, a cellular automaton model for two-lane traffic was able to overcome some of these problems and to produce a correct density inversion at densities somewhat below the maximum flow density. In this paper, we summarize different approaches to lane changing and their results, and propose a general scheme, according to which realistic lane changing rules can be developed. We test this scheme by applying it to several different lane changing rules, which, in spite of their differences, generate similar and realistic results. We thus conclude that, for producing realistic results, the logical structure of the lane changing rules, as proposed here, is at least as important as the microscopic details of the rules
    corecore