15 research outputs found

    Effect of Coxsackievirus B4 Infection on the Thymus: Elucidating Its Role in the Pathogenesis of Type 1 Diabetes

    Full text link
    peer reviewedThe thymus gland is a primary lymphoid organ for T-cell development. Various viral infections can result in disturbance of thymic functions. Medullary thymic epithelial cells (mTECs) are important for the negative selection of self-reactive T-cells to ensure central tolerance. Insulin-like growth factor 2 (IGF2) is the dominant self-peptide of the insulin family expressed in mTECs and plays a crucial role in the intra-thymic programing of central tolerance to insulin-secreting islet β-cells. Coxsackievirus B4 (CVB4) can infect and persist in the thymus of humans and mice, thus hampering the T-cell maturation and differentiation process. The modulation of IGF2 expression and protein synthesis during a CVB4 infection has been observed in vitro and in vivo in mouse models. The effect of CVB4 infections on human and mouse fetal thymus has been studied in vitro. Moreover, following the inoculation of CVB4 in pregnant mice, the thymic function in the fetus and offspring was disturbed. A defect in the intra-thymic expression of self-peptides by mTECs may be triggered by CVB4. The effects of viral infections, especially CVB4 infection, on thymic cells and functions and their possible role in the pathogenesis of type 1 diabetes (T1D) are presented

    How does thymus infection by coxsackievirus contribute to the pathogenesis of type 1 diabetes?

    Get PDF
    Through synthesis and presentation of neuroendocrine self-antigens by major histocom- patibility complex proteins, thymic epithelial cells (TECs) play a crucial role in programing central immune self-tolerance to neuroendocrine functions. Insulin-like growth factor- 2 (IGF-2) is the dominant gene/polypeptide of the insulin family that is expressed in TECs from different animal species and humans. Igf2 transcription is defective in the thymus of diabetes-prone bio-breeding rats, and tolerance to insulin is severely decreased in Igf2−/− mice. For more than 15 years now, our group is investigating the hypothesis that, besides a pancreotropic action, infection by coxsackievirus B4 (CV- B4) could implicate the thymus as well, and interfere with the intrathymic programing of central tolerance to the insulin family and secondarily to insulin-secreting islet β cells. In this perspective, we have demonstrated that a productive infection of the thymus occurs after oral CV-B4 inoculation of mice. Moreover, our most recent data have demonstrated that CV-B4 infection of a murine medullary (m) TEC line induces a significant decrease in Igf2 expression and IGF-2 production. In these conditions, Igf1 expression was much less affected by CV-B4 infection, while Ins2 transcription was not detected in this cell line. Through the inhibition of Igf2 expression in TECs, CV-B4 infection could lead to a breakdown of central immune tolerance to the insulin family and promote an autoimmune response against insulin-secreting islet β cells. Our major research objective now is to understand the molecular mechanisms by which CV-B4 infection of TECs leads to a major decrease in Igf2 expression in these cells.Euro-Thymaid

    Enteroviruses and type 1 diabetes: towards a better understanding of the relationship

    No full text
    International audienceEnvironmental factors, especially viruses, are involved in the initiation or the acceleration of type 1 diabetes (T1D) pathogenesis. Epidemiological data strongly suggest that enteroviruses, such as coxsackievirus B4 (CV‐B4), can be associated with T1D. It has been demonstrated that enterovirus infections were significantly more prevalent in at risk individuals, such as siblings of diabetic patients, when they developed anti‐β‐cell autoantibodies or T1D, and in recently diagnosed diabetic patients, compared with control subjects. The isolation of CV‐B4 from the pancreas of diabetic patients strengthened the hypothesis of a relationship between the virus and the disease. Studies performed in vitro and in vivo in animal models helped to discover mechanisms of the infection of pancreas and other tissues, potentially able to play a role in the pathogenesis of T1D. Interestingly, it cannot be excluded that enteroviruses behave as half‐devil half‐angel since experimental studies suggest that, in certain conditions, these agents would be able to protect individuals against the disease. All of the plausible mechanisms by which enterovirus may be related to T1D will be reviewed here

    Modulation of IGF2 expression in the murine thymus and thymic epithelial cells following coxsackie-B4 infection

    Full text link
    Coxsackievirus B4 (CV-B4) can infect human and murine thymic epithelial cells (TECs). In a murine TEC cell line, CV-B4 can downregulate the transcription of the insulin-like growth factor 2 (Igf2) gene coding for the self-peptide of the insulin family. In this study, we show that CV-B4 infections of a murine TEC cell line decreased Igf2 P3 promoter activity by targeting a region near the transcription start site; however, the stability of Igf2 transcripts remained unchanged, indicating a regulation of Igf2 transcription. Furthermore, CV-B4 infections decreased STAT3 phosphorylation in vitro. We also showed that mice infected with CV-B4 had an altered expression of Igf2 isoforms as detected in TECs, followed by a decrease in the pro-IGF2 precursor in the thymus. Our study sheds new light on the intrathymic regulation of Igf2 transcription during CV-B4 infections and supports the hypothesis that a viral infection can disrupt central self-tolerance to insulin by decreasing Igf2 transcription in the thymic epithelium
    corecore