23 research outputs found

    Novel hypoxia-related gene signature for predicting prognoses that correlate with the tumor immune microenvironment in NSCLC

    Get PDF
    Background: Intratumoral hypoxia is widely associated with the development of malignancy, treatment resistance, and worse prognoses. The global influence of hypoxia-related genes (HRGs) on prognostic significance, tumor microenvironment characteristics, and therapeutic response is unclear in patients with non-small cell lung cancer (NSCLC).Method: RNA-seq and clinical data for NSCLC patients were derived from The Cancer Genome Atlas (TCGA) database, and a group of HRGs was obtained from the MSigDB. The differentially expressed HRGs were determined using the limma package; prognostic HRGs were identified via univariate Cox regression. Using the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression, an optimized prognostic model consisting of nine HRGs was constructed. The prognostic model’s capacity was evaluated by Kaplan‒Meier survival curve analysis and receiver operating characteristic (ROC) curve analysis in the TCGA (training set) and GEO (validation set) cohorts. Moreover, a potential biological pathway and immune infiltration differences were explained.Results: A prognostic model containing nine HRGs (STC2, ALDOA, MIF, LDHA, EXT1, PGM2, ENO3, INHA, and RORA) was developed. NSCLC patients were separated into two risk categories according to the risk score generated by the hypoxia model. The model-based risk score had better predictive power than the clinicopathological method. Patients in the high-risk category had poor recurrence-free survival in the TCGA (HR: 1.426; 95% CI: 0.997–2.042; p = 0.046) and GEO (HR: 2.4; 95% CI: 1.7–3.2; p < 0.0001) cohorts. The overall survival of the high-risk category was also inferior to that of the low-risk category in the TCGA (HR: 1.8; 95% CI: 1.5–2.2; p < 0.0001) and GEO (HR: 1.8; 95% CI: 1.4–2.3; p < 0.0001) cohorts. Additionally, we discovered a notable distinction in the enrichment of immune-related pathways, immune cell abundance, and immune checkpoint gene expression between the two subcategories.Conclusion: The proposed 9-HRG signature is a promising indicator for predicting NSCLC patient prognosis and may be potentially applicable in checkpoint therapy efficiency prediction

    A Case of Alveolar Echinococcosis Occurring in the Hilar Bile Duct

    No full text

    A Promising Therapeutic Target for Metabolic Diseases: Neuropeptide Y Receptors in Humans

    No full text
    Human neuropeptide Y (hNPY) is one of the most widely expressed neurotransmitters in the human central and peripheral nervous systems. It consists of 36 highly conserved amino acid residues, and was first isolated from the porcine hypothalamus in 1982. While it is the most recently discovered member of the pancreatic polypeptide family (which includes neuropeptide Y, gut-derived hormone peptide YY, and pancreatic polypeptide), NPY is the most abundant peptide found in the mammalian brain. In order to exert particular functions, NPY needs to bind to the NPY receptor to activate specific signaling pathways. NPY receptors belong to the class A or rhodopsin-like G-protein coupled receptor (GPCR) family and signal via cell-surface receptors. By binding to GPCRs, NPY plays a crucial role in various biological processes, including cortical excitability, stress response, food intake, circadian rhythms, and cardiovascular function. Abnormal regulation of NPY is involved in the development of a wide range of diseases, including obesity, hypertension, atherosclerosis, epilepsy, metabolic disorders, and many cancers. Thus far, five receptors have been cloned from mammals (Y1, Y2, Y4, Y5, and y6), but only four of these (hY1, hY2, hY4, and hY5) are functional in humans. In this review, we summarize the structural characteristics of human NPY receptors and their role in metabolic diseases

    Endoplasmic reticulum and mitochondrial double-targeted NIR photosensitizer synergistically promote tumor cell death

    No full text
    The excessive production of reactive oxygen species (ROS) can damage the mitochondrial membrane and induce apoptosis, causing endoplasmic reticulum stress and triggering immunogenic cell death. Therefore, the combination of apoptosis and immunogenic death by the dual-targeted ROS generator has great potential to address inefficient cancer treatment. A near-infrared photosensitizer was developed for efficient ROS production and dual-targeted cancer treatment. Due to the modulation of electron structure, the reduced transition energy barrier affords TCy5-I-3F the highest efficiency to produce ROS. TCy5-I-3F has excellent mitochondrial and endoplasmic reticulum targeting ability, causing cell apoptosis and stress of the endoplasmic reticulum for destroying cancer cells. In the dual-targeted mode, high expression of GRP780, activation of heat shock protein (HSP70), the outflow of high mobility group protein B1, efflux of Calreticulin, and massive efflux of adenosine triphosphate are evaluated in the pharmacological experiments. In vivo experiments, the maturation of dendritic cells (DC, CD80+, CD86+), CD8+ T cells and CD3+ T cells also highlights the effectiveness. The tumors of mice treated with TCy5-I-3F and near-infrared (NIR) light are significantly inhibited. The multifunctional targeting design and corresponding mechanisms prove a new insight for exploring efficient photodynamic therapy drugs
    corecore