30 research outputs found
Experimental validation of a quasi-realtime human respiration detection method via UWB radar
In this paper, we propose a quasi-realtime human respiration detection method via UWB radar system in through-wall or similar condition. With respect to the previous proposed automatic detection method, the new proposed method assures competitive performance in the human respiration motion detection and effective noise/clutter rejection, which have been proved by experimental results in actual scenario. This new method has also been implemented in a UWB through-wall life-detection radar prototype, and its time consuming is about 2Â s, which can satisfy the practical requirement of quasi-realtime for through-wall sequential vital sign detection. Therefore, it can be an alternative for through-obstacles static human detection in antiterrorism or rescue scenarios
Human Respiration Localization Method Using UWB Linear Antenna Array
Human respiration is the basic vital sign in remote monitoring. There has been remarkable progress in this area, but some challenges still remain to obtain the angle-of-arrival (AOA) and distinguish the individual signals. This paper presents a 2D noncontact human respiration localization method using Ultra-Wideband (UWB) 1D linear antenna array. The imaging reconstruction based on beamforming is used to estimate the AOA of the human chest. The distance-slow time 2D matrix at the estimated AOA is processed to obtain the distance and respiration frequency of the vital sign. The proposed method can be used to isolate signals from individual targets when more than one human object is located in the surveillance space. The feasibility of the proposed method is demonstrated via the simulation and experiment results
An FPGA-Integrated Time-to-Digital Converter Based on a Ring Oscillator for Programmable Delay Line Resolution Measurement
We describe the architecture of a time-to-digital converter (TDC), specially intended to measure the delay resolution of a programmable delay line (PDL). The configuration, which consists of a ring oscillator, a frequency divider (FD), and a period measurement circuit (PMC), is implemented in a field programmable gate array (FPGA) device. The ring oscillator realized in loop containing a PDL and a look-up table (LUT) generates periodic oscillatory pulses. The FD amplifies the oscillatory period from nanosecond range to microsecond range. The time-to-digital conversion is based on counting the number of clock cycles between two consecutive pulses of the FD by the PMC. Experiments have been conducted to verify the performance of the TDC. The achieved relative errors for four PDLs are within 0.50%-1.21% and the TDC has an equivalent resolution of about 0.4 ps
Exploring the prevalence and chest CT predictors of Long COVID in children: a comprehensive study from Shanghai and Linyi
IntroductionCOVID-19 constitutes a pandemic of significant detriment to human health. This study aimed to investigate the prevalence of Long COVID following SARS-CoV-2 infection, analyze the potential predictors of chest CT for the development of Long COVID in children.MethodsA cohort of children who visited the respiratory outpatient clinics at Shanghai Children's Medical Center or Linyi Maternal and Child Health Care Hospital from December 2022 to February 2023 and underwent chest CT scans within 1 week was followed up. Data on clinical characteristics, Long COVID symptoms, and chest CT manifestations were collected and analyzed. Multivariate logistic regression models and decision tree models were employed to identify factors associated with Long COVID.ResultsA total of 416 children were included in the study. Among 277 children who completed the follow-up, the prevalence of Long COVID was 23.1%. Chronic cough, fatigue, brain fog, and post-exertional malaise were the most commonly reported symptoms. In the decision tree model for Long COVID, the presence of increased vascular markings, the absence of normal CT findings, and younger age were identified as predictors associated with a higher likelihood of developing Long COVID in children. However, no significant correlation was found between chest CT abnormality and the occurrence of Long COVID.DiscussionLong COVID in children presents a complex challenge with a significant prevalence rate of 23.1%. Chest CT scans of children post-SARS-CoV-2 infection, identified as abnormal with increased vascular markings, indicate a higher risk of developing Long COVID
Study of accelerated erosion of elbow-shaped connections with corrosion defects
Abstract In the later stages of gas field development, corrosion and erosion wear often occur in elbow-shaped connections used for gas transportation. Combined with laboratory corrosion experiments, the paper is based on CFD to study the distribution characteristics of pressure and velocity in the flow field for the elbow with pre-set corrosion defects. Simultaneously, the specific procedure is designed to track the formation of Dean vortices, thereby revealing the impact patterns of different corrosion defect features on the erosion outcomes of the elbow. Accordingly, the effect of different arrangement, number and form of corrosion defects on erosion wear was systematically analyzed. The results show that: (1) A comparative analysis of the three different defect distribution forms indicates that erosion occurs mainly at the bend near the outlet Section (45° ~ 60°). Double corrosion defects in the radial distribution will significantly accelerate the rate of pipe erosion, changing the location of maximum erosion rate. (2) By controlling the number of corrosion defects to represent the size of the corroded area, the study reveals as the number of defects increases, the rate and area of erosion in surface of the target material increases significantly. Thus, the area of the corrosion will explicitly change the effect of erosion. (3) As the depth of the defects (corrosion rate) increase, the erosion rate around the radial and axial defects increases exponentially compared to the absence of corrosion, reaching a maximum of 7.8 × 10−6 kg/(m2·s). Corrosion and erosion are two complementary forms of damage to pipe in the production process. The presence of corrosion defects leads to faster erosion rates and changes in the overflow area, reducing service life. Hence, only a reasonable control of both types of wear can ensure the longevity of gas production and transportation
Deep understanding of typical CNT morphology on the microstructure and mechanical properties of 2D carbon/carbon composites
For the inadequate interlaminar strength of 2D carbon/carbon (C/C) composite, in-situ grown carbon nanotubes (CNTs) reinforcing strategy was put forward to strengthen the interlaminar matrix at the nanoscale and inhibit the interlaminar cracking. CNT morphology is an essential factor in influencing the enhancement effect. Herein, the influence of in-situ grown CNT morphology on the microstructure and mechanical properties of C/C composite was deeply studied. The radially-aligned straight CNTs could induce the formation of highly-ordered pyrolytic carbon (PyC), while PyC in randomly-distributed curved CNTs concentrated area exhibits an isotropic structure. Further, radially-aligned straight CNTs show better improvement on the flexural and shear strength of C/C composites. According to the fine structural characterization and finite element simulation, the influence mechanism of CNT morphology was revealed. CNT morphology can influence the stress distribution in the PyC protective layer, and compared with radially-aligned straight CNTs, randomly-distributed curved CNTs induce higher tensile stress in the PyC protective layer, which has a detrimental impact on the flexural and shear properties of C/C composite. This work provides novel insights into the effect of CNT morphology on the microstructure and mechanical properties of C/C composites, which gives a basis for the structural design and preparation of CNTs reinforced C/C composites
An FPGA-Integrated Time-to-Digital Converter Based on a Ring Oscillator for Programmable Delay Line Resolution Measurement
We describe the architecture of a time-to-digital converter (TDC), specially intended to measure the delay resolution of a programmable delay line (PDL). The configuration, which consists of a ring oscillator, a frequency divider (FD), and a period measurement circuit (PMC), is implemented in a field programmable gate array (FPGA) device. The ring oscillator realized in loop containing a PDL and a look-up table (LUT) generates periodic oscillatory pulses. The FD amplifies the oscillatory period from nanosecond range to microsecond range. The time-to-digital conversion is based on counting the number of clock cycles between two consecutive pulses of the FD by the PMC. Experiments have been conducted to verify the performance of the TDC. The achieved relative errors for four PDLs are within 0.50%–1.21% and the TDC has an equivalent resolution of about 0.4 ps
Optimization of Internet of Things Remote Desktop Protocol for Low-Bandwidth Environments Using Convolutional Neural Networks
This paper discusses optimizing desktop image quality and bandwidth consumption in remote IoT GUI desktop scenarios. Remote desktop tools, which are crucial for work efficiency, typically employ image compression techniques to manage bandwidth. Although JPEG is widely used for its efficiency in eliminating redundancy, it can introduce quality loss with increased compression. Recently, deep learning-based compression techniques have emerged, challenging traditional methods like JPEG. This study introduces an optimized RFB (Remote Frame Buffer) protocol based on a convolutional neural network (CNN) image compression algorithm, focusing on human visual perception in desktop image processing. The improved RFB protocol proposed in this paper, compared to the unoptimized RFB protocol, can save 30–80% of bandwidth consumption and enhances remote desktop image quality, as evidenced by improved PSNR and MS-SSIM values between the remote desktop image and the original image, thus providing superior desktop image transmission quality