25 research outputs found

    Quaternary Ammonium Palmitoyl Glycol Chitosan (GCPQ) Loaded with Platinum-Based Anticancer Agents—A Novel Polymer Formulation for Anticancer Therapy

    Get PDF
    Quaternary ammonium palmitoyl glycol chitosan (GCPQ) has already shown beneficial drug delivery properties and has been studied as a carrier for anticancer agents. Consequently, we synthesised cytotoxic platinum(IV) conjugates of cisplatin, carboplatin and oxaliplatin by coupling via amide bonds to five GCPQ polymers differing in their degree of palmitoylation and quaternisation. The conjugates were characterised by 1H and 195Pt NMR spectroscopy as well as inductively coupled plasma mass spectrometry (ICP-MS), the latter to determine the amount of platinum(IV) units per GCPQ polymer. Cytotoxicity was evaluated by the MTT assay in three human cancer cell lines (A549, non-small-cell lung carcinoma; CH1/PA-1, ovarian teratocarcinoma; SW480, colon adenocarcinoma). All conjugates displayed a high increase in their cytotoxic activity by factors of up to 286 times compared to their corresponding platinum(IV) complexes and mostly outperformed the respective platinum(II) counterparts by factors of up to 20 times, also taking into account the respective loading of platinum(IV) units per GCPQ polymer. Finally, a biodistribution experiment was performed with an oxaliplatin-based GCPQ conjugate in non-tumour-bearing BALB/c mice revealing an increased accumulation in lung tissue. These findings open promising opportunities for further tumouricidal activity studies especially focusing on lung tissue

    Fine-Tuning the Activation Mode of an 1,3-Indandione-Based Ruthenium(II)-Cymene Half-Sandwich Complex by Variation of Its Leaving Group

    Full text link
    Fine-tuning of the properties of a recently reported 1,3-indandione-based organoruthenium complex is attempted to optimize the stability under physiological conditions. Previous work has shown its capacity of inhibiting topoisomerase IIα; however, fast aquation leads to undesired reactions and ligand cleavage in the blood stream before the tumor tissue is reached. Exchange of the chlorido ligand for six different N-donor ligands resulted in new analogs that were stable at pH 7.4 and 8.5. Only a lowered pH level, as encountered in the extracellular space of the tumor tissue, was capable of aquating the complexes. The 50% inhibitory concentration (IC50) values in three human cancer cell lines differed only slightly, and their dependence on the utilized leaving group was smaller than what would be expected from their differences in cellular accumulation, but in accordance with the very minor variation revealed in measurements of the complexes’ lipophilicity

    Multifunctional Pt(IV) Prodrug Candidates Featuring the Carboplatin Core and Deferoxamine

    Full text link
    The synergistic combination of the anticancer drug carboplatin and the iron chelator deferoxamine (DFO) served as a foundation for the development of novel multifunctional prodrugs. Hence, five platinum(iv) complexes, featuring the equatorial coordination sphere of carboplatin, and one or two DFO units incorporated at axial positions, were synthesized and characterized using ESI-HRMS, multinuclear (H-1, C-13, N-15, Pt-195) NMR spectroscopy and elemental analysis. Analytical studies demonstrated that the chelating properties of the DFO moiety were not compromised after coupling to the platinum(iv) core. The cytotoxic activity of the compounds was evaluated in monolayer (2D) and spheroid (3D) cancer cell models, derived from ovarian teratocarcinoma (CH1/PA-1), colon carcinoma (SW480) and non-small cell lung cancer (A549). The platinum(iv)-DFO prodrugs demonstrated moderate in vitro cytotoxicity (a consequence of their slow activation kinetics) but with less pronounced differences between intrinsically chemoresistant and chemosensitive cell lines as well as between 2D and 3D models than the clinically used platinum(ii) drug carboplatin

    Osmium(IV) complexes with 1H- and 2H-indazoles: Tautomer identity versus spectroscopic properties and antiproliferative activity

    Get PDF
    AbstractA one-pot synthesis of osmium(IV) complexes with two different tautomers of indazole, 1H-indazole and 2H-indazole, namely (H2ind)[OsIVCl5(2H-ind)] (1) and (H2ind)[OsIVCl5(1H-ind)] (2) is reported. Both compounds have been comprehensively characterized by NMR spectroscopy, ESI (electrospray ionization) mass spectrometry, electronic absorption spectroscopy, IR spectroscopy, cyclic voltammetry and tested for antiproliferative activity in vitro in three human cancer cell lines, CH1 (ovarian carcinoma), A549 (non-small cell lung cancer) and SW480 (colon carcinoma), as well as in vivo in a Hep3B SCID mouse xeno-transplantation model. 2H-Indazole tautomer stabilization in 1 has been confirmed by X-ray diffraction
    corecore