77 research outputs found
Oxidative Stress and Treg and Th17 Dysfunction in Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple organ systems. The pathogenic mechanisms that cause SLE remain unclear; however, it is well recognized that the immune balance is disturbed and that this imbalance contributes to the autoimmune symptoms of SLE. Oxidative stress represents an imbalance between the production and manifestation of reactive oxygen species and the ability of the biological system to readily detoxify the reactive intermediates or to repair the resulting damage. In humans, oxidative stress is involved in many diseases, including atherosclerosis, myocardial infarction, and autoimmune diseases. Numerous studies have confirmed that oxidative stress plays an important role in the pathogenesis of SLE. This review mainly focuses on the recent research advances with respect to oxidative stress and regulatory T (Treg)/helper T 17 (Th17) cell dysfunction in the pathogenesis of SLE
Tolerogenic Splenic IDO +
TGF-Ξ²-induced regulatory T cells (iTregs) retain Foxp3 expression and immune-suppressive activity in collagen-induced arthritis (CIA). However, the mechanisms whereby transferred iTregs suppress immune responses, particularly the interplay between iTregs and dendritic cells (DCs) in vivo, remain incompletely understood. In this study, we found that after treatment with iTregs, splenic CD11c+DCs, termed βDCiTreg,β expressed tolerogenic phenotypes, secreted high levels of IL-10, TGF-Ξ², and IDO, and showed potent immunosuppressive activity in vitro. After reinfusion with DCiTreg, marked antiarthritic activity improved clinical scores and histological end-points were observed. The serological levels of inflammatory cytokines and anti-CII antibodies were low and TGF-Ξ² production was high in the DCiTreg-treated group. DCiTreg also induced new iTregs in vivo. Moreover, the inhibitory activity of DCiTreg on CIA was lost following pretreatment with the inhibitor of indoleamine 2,3-dioxygenase (IDO). Collectively, these findings suggest that transferred iTregs could induce tolerogenic characteristics in splenic DCs and these cells could effectively dampen CIA in an IDO-dependent manner. Thus, the potential therapeutic effects of iTregs in CIA are likely maintained through the generation of tolerogenic DCs in vivo
Aaqueous exposure to silver nanoparticles synthesized by abalone viscera hydrolysates promotes the growth, immunity and gut health of zebrafish (Danio rerio)
Silver nanoparticles (AgNPs) have the potential to be used in aquaculture, but their influence on the growth and health of aquatic organisms has not been extensively investigated. In this study, the abalone viscera hydrolysates decorated AgNPs (AVH-AgNPs) were dispersed into aquaculture water at different concentrations (0, 6, 9, and 18βΞΌg/l) to evaluate the biological effects on zebrafish (Danio rerio). The results showed that the AVH-AgNPs treatments of 6 and 9βΞΌg/l promoted the growth and did not cause obvious damage to the gills, intestines, and livers of zebrafish. All the treatments induced catalase (CAT) and superoxide dismutase (SOD) activities and increased glutathione (GSH) content in the livers and upregulated the expression of immune related genes. The effects of 9 and 18βΞΌg/l AVH-AgNPs treatments were more obvious. After AVH-AgNPs treatment, the abundances of some potential pathogens, such as species Plesimonas shigelloides and Pseudomonas alcaligenes and genus Flavobacterium decreased significantly. In contrast, the abundance of some beneficial bacteria that can degrade pollutants and toxins (e.g., Rhodococcus erythropolis) increased significantly. Thus, the application of low concentrations (6β~β18βΞΌg/l) of AVH-AgNPs in aquaculture water is relatively safe and has a positive effect on zebrafish farming
Activation of Sirt1 by Resveratrol Inhibits TNF-Ξ± Induced Inflammation in Fibroblasts
Inflammation is one of main mechanisms of autoimmune disorders and a common feature of most diseases. Appropriate suppression of inflammation is a key resolution to treat the diseases. Sirtuin1 (Sirt1) has been shown to play a role in regulation of inflammation. Resveratrol, a potent Sirt1 activator, has anti-inflammation property. However, the detailed mechanism is not fully understood. In this study, we investigated the anti-inflammation role of Sirt1 in NIH/3T3 fibroblast cell line. Upregulation of matrix metalloproteinases 9 (MMP-9), interleukin-1beta (IL-1Ξ²), IL-6 and inducible nitric oxide synthase (iNOS) were induced by tumor necrosis factor alpha (TNF-Ξ±) in 3T3 cells and resveratrol suppressed overexpression of these pro-inflammatory molecules in a dose-dependent manner. Knockdown of Sirt1 by RNA interference caused 3T3 cells susceptible to TNF-Ξ± stimulation and diminished anti-inflammatory effect of resveratrol. We also explored potential anti-inflammatory mechanisms of resveratrol. Resveratrol reduced NF-ΞΊB subunit RelA/p65 acetylation, which is notably Sirt1 dependent. Resveratrol also attenuated phosphorylation of mammalian target of rapamycin (mTOR) and S6 ribosomal protein (S6RP) while ameliorating inflammation. Our data demonstrate that resveratrol inhibits TNF-Ξ±-induced inflammation via Sirt1. It suggests that Sirt1 is an efficient target for regulation of inflammation. This study provides insight on treatment of inflammation-related diseases
Baicalin Inhibits IL-17-Mediated Joint Inflammation in Murine Adjuvant-Induced Arthritis
T-helper-17 (Th17) cells are implicated in a number of inflammatory disorders including rheumatoid arthritis. Antagonism of Th17 cells is a treatment option for arthritis. Here, we report that Baicalin, a compound isolated from the Chinese herb Huangqin (Scutellaria baicalensis Georgi), relieved ankle swelling and protected the joint against inflammatory destruction in a murine adjuvant-induced arthritis model. Baicalin inhibited splenic Th17 cell population expansion in vivo. Baicalin prevented interleukin- (IL-) 17-mediated lymphocyte adhesion to cultured synoviocytes. Baicalin also blocked IL-17-induced intercellular adhesion molecule 1, vascular cell adhesion molecule 1, IL-6, and tumor necrosis factor-alpha mRNA expression in cultured synoviocytes. Collectively, these findings suggest that Baicalin downregulates the joint inflammation caused by IL-17, which is likely produced by an expanded population of splenic Th17 cells in experimental arthritis. Baicalin might be a promising novel therapeutic agent for treating rheumatoid arthritis in humans
College studentsβ happiness personality attitude and correlation analysis of physical exercise
An empirical analysis in this paper, the frequency of exercise, exercise intensity and exercise time according to the option of the survey, analyze the motivation of college students based on exercise sample T test results, are analyzed based on different genders, different students, different personality attitude subject categories and whether belong to one child policy differences T test results, the analysis was based on different gender, different students and whether happiness belong to one child policy differences T test results, are analyzed based on different exercise intensity, exercise time and different frequency of subjective well-being and personality attitude the correlation of test results
Tolerogenic Splenic IDO+ Dendritic Cells from the Mice Treated with Induced-Treg Cells Suppress Collagen-Induced Arthritis
TGF-Ξ²-induced regulatory T cells (iTregs) retain Foxp3 expression and immune-suppressive activity in collagen-induced arthritis (CIA). However, the mechanisms whereby transferred iTregs suppress immune responses, particularly the interplay between iTregs and dendritic cells (DCs) in vivo, remain incompletely understood. In this study, we found that after treatment with iTregs, splenic CD11c+DCs, termed βDCiTreg,β expressed tolerogenic phenotypes, secreted high levels of IL-10, TGF-Ξ², and IDO, and showed potent immunosuppressive activity in vitro. After reinfusion with DCiTreg, marked antiarthritic activity improved clinical scores and histological end-points were observed. The serological levels of inflammatory cytokines and anti-CII antibodies were low and TGF-Ξ² production was high in the DCiTreg-treated group. DCiTreg also induced new iTregs in vivo. Moreover, the inhibitory activity of DCiTreg on CIA was lost following pretreatment with the inhibitor of indoleamine 2,3-dioxygenase (IDO). Collectively, these findings suggest that transferred iTregs could induce tolerogenic characteristics in splenic DCs and these cells could effectively dampen CIA in an IDO-dependent manner. Thus, the potential therapeutic effects of iTregs in CIA are likely maintained through the generation of tolerogenic DCs in vivo
Numerical Investigation of Inlet Boundary Layer in an Axial Compressor Tandem Cascade
To explore the inlet boundary layer (IBL) influence on the tandem cascade aerodynamic performance, this paper took the high subsonic compressor NACA65 K48 cascade and its modified tandem cascade as the research object. The effects of the IBL thickness and the skewed IBL on the aerodynamic performance of the original cascade and tandem cascade were analyzed based on the numerical method. The results show that the tandem cascade effective design makes it better than the original cascade in the aerodynamic performance under different IBL conditions. Compared with the collateral IBL, the skewed IBL can effectively improve the aerodynamic performance of the original cascade and tandem cascade by suppressing the endwall cross flow, but an increase in the IBL thickness will suppress this advantage. In addition, the increase of incidence angle or the IBL thickness will make the tandem cascade forward blade corner separation more serious and cause the flow passage to be blocked, which seriously affects the rear blade diffusing capacity. In general, the IBL thickness is positively correlated with the tandem cascade total pressure loss and negatively correlated with the static pressure rise (except for the β6Β° incidence angle). The skewed IBL can effectively reduce the total pressure loss and increase the static pressure rise within β4Β°~7Β° incidence angle, but the law is opposite at a β6Β° incidence angle. At a 0Β° or 2Β° incidence angle, the performance improvement effect of the skewed IBL on the tandem cascade is the best, and this positive effect diminishes as it tends towards a larger positive incidence angle or a smaller negative incidence angle
- β¦