5 research outputs found

    Light-Induced Defect Formation and Pt Single Atoms Synergistically Boost Photocatalytic H2 Production in 2D TiO2-Bronze Nanosheets ?

    Get PDF
    Ultrathin two-dimensional (2D) semiconductor nanosheets decorated with single atomic species (SAs) have recently attracted increasing attention due to their abundant surface-exposed reactive sites and maximum SAs binding capabilities thus lowering the catalyst cost, without sacrificing high performance for photocatalytic hydrogen (H2) production from water. Here, we present a strategy to prepare titanium dioxide-bronze nanosheets (TiO2-BNS) and H2-reduced TiO2 nanosheets (TiO2- HRNS) synthesized, characterized, and applied for photocatalytic H2 production. Surprisingly, black TiO2-HRNS show complete photo inactivity, while the TiO2-BNS-Pt0.05 nanohybrid shows excellent H2 production rate with a very low loading of 0.05 wt % Pt. TiO2-BNS-Pt0.05 presents around 10 and 99 times higher photocatalytic rate than pristine TiO2-BNS under solar and 365 nm UV-LED light irradiation, respectively. Due to the 2D morphology and the presence of abundant coordinating sites, the successful formation of widely dispersed Pt SAs was achieved. Most excitingly, the in situ formation of surface-exposed defect sites (Ti3+) was observed for TiO2-BNS under light illumination, suggesting their significant role in enhancing the H2 production rate. This self-activation and amplification behavior of TiO2-BNS can be extended to other 2D systems and applied to other photocatalytic reactions, thus providing a facile approach for fully utilizing noble metal catalysts via the successful formation of SAs

    Defect engineering over anisotropic brookite toward substrate-specific photo-oxidation of alcohols

    Get PDF
    Generally adopted strategies for enhancing the photocatalytic activity are aimed at tuning the visible light response, the exposed crystal facets, and the nanocrystal shape. Here, we present a different approach for designing efficient photocatalysts displaying a substrate-specific reactivity upon defect engineering. The platinized, defective anisotropic brookite TiO2 photocatalysts are tested for alcohol photoreforming showing up to an 11-fold increase in methanol oxidation rate, compared with the pristine one, while presenting much lower ethanol or isopropanol specific oxidation rates. We demonstrate that the substrate- specific alcohol oxidation and hydrogen evolution reactions are tightly related, and when the former is increased, the latter is boosted. The reduced anisotropic brookite shows up to 18-fold higher specific photoactivity with respect to anatase and brookite with isotropic nanocrystals. Advanced in situ characterizations and theoretical investigations reveal that controlled engineering over oxygen vacancies and lattice strain produces large electron polarons hosting the substratespecific active sites for alcohol photo-oxidation
    corecore