45 research outputs found

    Analysis of a diffusive effective mass model for nanowires

    Get PDF
    We propose in this paper to derive and analyze a self-consistent model describing the diffusive transport in a nanowire. From a physical point of view, it describes the electron transport in an ultra-scaled confined structure, taking in account the interactions of charged particles with phonons. The transport direction is assumed to be large compared to the wire section and is described by a drift-diffusion equation including effective quantities computed from a Bloch problem in the crystal lattice. The electrostatic potential solves a Poisson equation where the particle density couples on each energy band a two dimensional confinement density with the monodimensional transport density given by the Boltzmann statistics. On the one hand, we study the derivation of this Nanowire Drift-Diffusion Poisson model from a kinetic level description. On the other hand, we present an existence result for this model in a bounded domain

    Optimal operation of cryogenic calorimeters through deep reinforcement learning

    Full text link
    Cryogenic phonon detectors with transition-edge sensors achieve the best sensitivity to light dark matter-nucleus scattering in current direct detection dark matter searches. In such devices, the temperature of the thermometer and the bias current in its readout circuit need careful optimization to achieve optimal detector performance. This task is not trivial and is typically done manually by an expert. In our work, we automated the procedure with reinforcement learning in two settings. First, we trained on a simulation of the response of three CRESST detectors used as a virtual reinforcement learning environment. Second, we trained live on the same detectors operated in the CRESST underground setup. In both cases, we were able to optimize a standard detector as fast and with comparable results as human experts. Our method enables the tuning of large-scale cryogenic detector setups with minimal manual interventions.Comment: 23 pages, 14 figures, 2 table

    Comprehensive Approach to Distinguish Patients with Solid Tumors from Healthy Controls by Combining Androgen Receptor Mutation p.H875Y with Cell-Free DNA Methylation and Circulating miRNAs

    No full text
    Liquid biopsy-based tests emerge progressively as an important tool for cancer diagnostics and management. Currently, researchers focus on a single biomarker type and one tumor entity. This study aimed to create a multi-analyte liquid biopsy test for the simultaneous detection of several solid cancers. For this purpose, we analyzed cell-free DNA (cfDNA) mutations and methylation, as well as circulating miRNAs (miRNAs) in plasma samples from 97 patients with cancer (20 bladder, 9 brain, 30 breast, 28 colorectal, 29 lung, 19 ovarian, 12 pancreas, 27 prostate, 23 stomach) and 15 healthy controls via real-time qPCR. Androgen receptor p.H875Y mutation (AR) was detected for the first time in bladder, lung, stomach, ovarian, brain, and pancreas cancer, all together in 51.3% of all cancer samples and in none of the healthy controls. A discriminant function model, comprising cfDNA mutations (COSM10758, COSM18561), cfDNA methylation markers (MLH1, MDR1, GATA5, SFN) and miRNAs (miR-17-5p, miR-20a-5p, miR-21-5p, miR-26a-5p, miR-27a-3p, miR-29c-3p, miR-92a-3p, miR-101-3p, miR-133a-3p, miR-148b-3p, miR-155-5p, miR-195-5p) could further classify healthy and tumor samples with 95.4% accuracy, 97.9% sensitivity, 80% specificity. This multi-analyte liquid biopsy-based test may help improve the simultaneous detection of several cancer types and underlines the importance of combining genetic and epigenetic biomarkers

    Robuste Regelungen

    No full text
    corecore