2,295 research outputs found

    Control of many electron states in semiconductor quantum dots by non-Abelian vector potentials

    Full text link
    Adiabatic time evolution of degenerate eigenstates of a quantum system provides a means for controlling electronic states since mixing between degenerate levels generates a matrix Berry phase. In the presence of spin-orbit coupling in n-type semiconductor quantum dots the electron Hamiltonian is invariant under time reversal operation and the many body groundstate may be doubly degenerate. This double degeneracy can generate non-Abelian vector potentials when odd number of electrons are present. We find that the antisymmetry of many electron wavefunction has no effect on the matrix Berry phase. We have derived equations that allow one to investigate the effect of electron correlations by expressing the non-Abelian vector potentials for many electron system in terms of single electron non-Abelian vector potentials.Comment: minor changes included, accepted in Phys. Rev.

    Far-infrared spectra of lateral quantum dot molecules

    Get PDF
    We study effects of electron-electron interactions and confinement potential on the magneto-optical absorption spectrum in the far-infrared range of lateral quantum dot molecules. We calculate far-infrared (FIR) spectra for three different quantum dot molecule confinement potentials. We use accurate exact diagonalization technique for two interacting electrons and calculate dipole-transitions between two-body levels with perturbation theory. We conclude that the two-electron FIR spectra directly reflect the symmetry of the confinement potential and interactions cause only small shifts in the spectra. These predictions could be tested in experiments with nonparabolic quantum dots by changing the number of confined electrons. We also calculate FIR spectra for up to six noninteracting electrons and observe some additional features in the spectrum.Comment: For better quality Figs download manuscript from http://www.fyslab.hut.fi/~mma/FIR/Helle_qdmfir.ps.g

    Time-Resolved Studies of a Rolled-Up Semiconductor Microtube Laser

    Full text link
    We report on lasing in rolled-up microtube resonators. Time-resolved studies on these semiconductor lasers containing GaAs quantum wells as optical gain material reveal particularly fast turn-on-times and short pulse emissions above the threshold. We observe a strong red-shift of the laser mode during the pulse emission which is compared to the time evolution of the charge-carrier density calculated by rate equations

    Experimental Investigation of Pervaporation Membranes for Biobutanol Separation

    Get PDF
    Biotechnological production of chemical building blocks is one important step towards a more sustainable production. Unfortunately, the products to be separated are often highly diluted. Pervaporation has received increasing attention for the separation of small amounts of organic compounds from aqueous solutions, especially in the separation of butanol from water or from fermentation broth. To evaluate the potential of pervaporation for biobutanol recovery a consistent database is required, describing the dependency of permeate fluxes and selectivities on process variables like temperature, permeate pressure as well as feed concentrations and compositions. Therefore, within this work we investigated the separation behaviour of a commercially available polydimethylsiloxane (PDMS) membrane and membranes based on poly(ether block amide) (PEBA) fabricated in our own laboratory. The membranes were tested under varying operating conditions. Fermentation by-products or impurities may affect the pervaporation separation performance. Therefore, in addition, the permeate fluxes and the influence of acetone, ethanol, acetic and butyric acid and 1,3-propanediol have been investigated in detail as well. Several differences in the permeability and selectivity of PDMS and PEBA were observed during the experimental study. Swelling experiments were applied to further analyse the separation behaviour of PDMS and PEBA more in detail. Finally the influence of the observed separation performances on the overall butanol pervaporation process is discussed. It was found that especially well permeating by-products like acetone can drastically influence the subsequent downstreaming process
    corecore