1 research outputs found

    Is there anybody out there?

    No full text
    Soil organic carbon (SOC) turnover in subsoils is assumed to be limited to spatially restricted microsites where fresh substrate inputs occur. Vice versa, the growth and activity of microorganisms outside of such hotspots may be limited by easily available substrates. The apparent long-term stability of subsoil organic carbon could thus be a result of microbial inactivity in these vast "cold regions" outside of hotspots. The aim of this study was to obtain realistic data about the in situ distribution of microbial hotspots in deep soil using soil zymography for three extracellular enzymes on undisturbed soil slices sampled from 0 to 161 cm depth. The results showed that most enzyme-driven turnover processes were concentrated to small portions of <1 to 10% of the subsoil volume, while enzymes in the major part of subsoils were barely active. In a second step, soil slices were homogenously sprayed with 14^{14}C glucose, incubated for 2 weeks and again analyzed with soil zymography. After glucose application, enzyme activities greatly increased in non-hotspot areas, thus confirming that substrate availability limits microbial activity in most of the subsoil volume. This implies that substrate limitation is a controlling factor for SOC stability in subsoils, suggesting that SOC in non-hotspots is persisting over long time periods until substrate becomes available and increases microbial activity
    corecore