4 research outputs found

    Growth Model Interpretation of Planet Size Distribution

    Full text link
    The radii and orbital periods of 4000+ confirmed/candidate exoplanets have been precisely measured by the Kepler mission. The radii show a bimodal distribution, with two peaks corresponding to smaller planets (likely rocky) and larger intermediate-size planets, respectively. While only the masses of the planets orbiting the brightest stars can be determined by ground-based spectroscopic observations, these observations allow calculation of their average densities placing constraints on the bulk compositions and internal structures. Yet an important question about the composition of planets ranging from 2 to 4 Earth radii still remains. They may either have a rocky core enveloped in a H2-He gaseous envelope (gas dwarfs) or contain a significant amount of multi-component, H2O-dominated ices/fluids (water worlds). Planets in the mass range of 10-15 Earth masses, if half-ice and half-rock by mass, have radii of 2.5 Earth radii, which exactly match the second peak of the exoplanet radius bimodal distribution. Any planet in the 2-4 Earth radii range requires a gas envelope of at most a few mass percentage points, regardless of the core composition. To resolve the ambiguity of internal compositions, we use a growth model and conduct Monte Carlo simulations to demonstrate that many intermediate-size planets are water worlds.Comment: PNAS link: https://www.pnas.org/content/116/20/9723 Complete data and mass-radius tables are available at: https://www.cfa.harvard.edu/~lzeng/planetmodels.htm

    Detecting and Characterizing Exomoons and Exorings

    Full text link
    Since the discovery of a planet transiting its host star in the year 2000, thousands of additional exoplanets and exoplanet candidates have been detected, mostly by NASA's Kepler space telescope. Some of them are almost as small as the Earth's moon. As the solar system is teeming with moons, more than a hundred of which are in orbit around the eight local planets, and with all of the local giant planets showing complex ring systems, astronomers have naturally started to search for moons and rings around exoplanets in the past few years. We here discuss the principles of the observational methods that have been proposed to find moons and rings beyond the solar system and we review the first searches. Though no exomoon or exoring has been unequivocally validated so far, theoretical and technological requirements are now on the verge of being mature for such discoveries.Comment: invited review, 17 pages, 4 figures (3 col, 1 b/w
    corecore