2 research outputs found

    Review of HBT or Bose-Einstein correlations in high energy heavy ion collisions

    Full text link
    A brief review is given on the discovery and the first five decades of the Hanbury Brown - Twiss effect and its generalized applications in high energy nuclear and particle physics, that includes a meta-review. Interesting and inspiring new directions are also highlighted, including for example source imaging, lepton and photon interferometry, non-Gaussian shape analysis as well as many other new directions. Existing models are compared to two-particle correlation measurements and the so-called RHIC HBT puzzle is resolved. Evidence for a (directional) Hubble flow is presented and the conclusion is confirmed by a successful description of the pseudorapidity dependence of the elliptic flow as measured in Au+Au collisions by the PHOBOS Collaboration.Comment: 14 pages, 1 figure, 8 sub-figures, invited plenary talk at the ICPA-QGP 2005 conference in Kolkata, Indi

    Medium-modified evolution of multiparticle production in jets in heavy-ion collisions

    Full text link
    The energy evolution of medium-modified average multiplicities and multiplicity fluctuations in quark and gluon jets produced in heavy-ion collisions is investigated from a toy QCD-inspired model. In this model, we use modified splitting functions accounting for medium-enhanced radiation of gluons by a fast parton which propagates through the quark gluon plasma. The leading contribution of the standard production of soft hadrons is found to be enhanced by the factor Ns\sqrt{N_s} while next-to-leading order (NLO) corrections are suppressed by 1/Ns1/\sqrt{N_s}, where the nuclear parameter Ns>1N_s>1 accounts for the induced-soft gluons in the hot medium. The role of next-to-next-to-leading order corrections (NNLO) is studied and the large amount of medium-induced soft gluons is found to drastically affect the convergence of the perturbative series. Our results for such global observables are cross-checked and compared with their limits in the vacuum and a new method for solving the second multiplicity correlator evolution equations is proposed.Comment: 21 pages and 8 figures, typo corrections, references adde
    corecore