8,970 research outputs found

    Engineering Negative Differential Conductance with the Cu(111) Surface State

    Full text link
    Low-temperature scanning tunneling microscopy and spectroscopy are employed to investigate electron tunneling from a C60-terminated tip into a Cu(111) surface. Tunneling between a C60 orbital and the Shockley surface states of copper is shown to produce negative differential conductance (NDC) contrary to conventional expectations. NDC can be tuned through barrier thickness or C60 orientation up to complete extinction. The orientation dependence of NDC is a result of a symmetry matching between the molecular tip and the surface states.Comment: 5 pages, 4 figures, 1 tabl

    Classification of SUSY and non-SUSY Chiral Models from Abelian Orbifolds AdS/CFT

    Full text link
    We classify compactifications of the type IIB superstring on AdS_{5} x S^{5}/\Gamma, where \Gamma is an abelian group of order n<= 12. Appropriate embedding of \Gamma in the isometry of S^5 yields both SUSY and non-SUSY chiral models that can contain the minimal SUSY standard model or the standard model. New non-SUSY three family models with \Gamma=Z_8 are introduced, which lead to the right Weinberg angle for TeV trinification.Comment: 12 pages, no figur

    Low relaxation rate in a low-Z alloy of iron

    Full text link
    The longest relaxation time and sharpest frequency content in ferromagnetic precession is determined by the intrinsic (Gilbert) relaxation rate \emph{GG}. For many years, pure iron (Fe) has had the lowest known value of G=57 MhzG=\textrm{57 Mhz} for all pure ferromagnetic metals or binary alloys. We show that an epitaxial iron alloy with vanadium (V) possesses values of GG which are significantly reduced, to 35±\pm5 Mhz at 27% V. The result can be understood as the role of spin-orbit coupling in generating relaxation, reduced through the atomic number ZZ.Comment: 14 pages, 4 figure

    Strain-stiffening in random packings of entangled granular chains

    Full text link
    Random packings of granular chains are presented as a model polymer system to investigate the contribution of entanglements to strain-stiffening in the absence of Brownian motion. The chain packings are sheared in triaxial compression experiments. For short chain lengths, these packings yield when the shear stress exceeds a the scale of the confining pressure, similar to packings of spherical particles. In contrast, packings of chains which are long enough to form loops exhibit strain-stiffening, in which the effective stiffness of the material increases with strain, similar to many polymer materials. The latter packings can sustain stresses orders-of-magnitude greater than the confining pressure, and do not yield until the chain links break. X-ray tomography measurements reveal that the strain-stiffening packings contain system-spanning clusters of entangled chains.Comment: 4 pages, 4 figures. submitted to Physical Review Letter

    Gilbert Damping in Magnetic Multilayers

    Full text link
    We study the enhancement of the ferromagnetic relaxation rate in thin films due to the adjacent normal metal layers. Using linear response theory, we derive the dissipative torque produced by the s-d exchange interaction at the ferromagnet-normal metal interface. For a slow precession, the enhancement of Gilbert damping constant is proportional to the square of the s-d exchange constant times the zero-frequency limit of the frequency derivative of the local dynamic spin susceptibility of the normal metal at the interface. Electron-electron interactions increase the relaxation rate by the Stoner factor squared. We attribute the large anisotropic enhancements of the relaxation rate observed recently in multilayers containing palladium to this mechanism. For free electrons, the present theory compares favorably with recent spin-pumping result of Tserkovnyak et al. [Phys. Rev. Lett. \textbf{88},117601 (2002)].Comment: 1 figure, 5page

    Discrete element modeling and fibre optical measurements for fluidized bed spray granulation

    Get PDF
    Spout fluidized beds are frequently used for the production of granules or\ud particles through granulation. The products find application in a large variety of\ud applications, for example detergents, fertilizers, pharmaceuticals and food. Spout fluidized\ud beds have a number of advantageous properties, such as a high mobility of the particles,\ud which prevents undesired agglomeration and yields excellent heat transfer properties. The\ud particle growth mechanism in a spout fluidized bed as function of particle-droplet\ud interaction has a profound influence on the particle morphology and thus on the product\ud quality. Nevertheless, little is known about the details of the granulation process. This is\ud mainly due to the fact that the granulation process is not visually accessible. In this work\ud we use fundamental, deterministic models to enable the detailed investigation of\ud granulation behaviour in a spout fluidized bed. A discrete element model is used\ud describing the dynamics of the continuous gas-phase and the discrete droplets and\ud particles. For each element momentum balances are solved. The momentum transfer\ud among each of the three phases is described in detail at the level of individual elements.\ud The results from the discrete element model simulations are compared with local\ud measurements of particle volume fractions as well as particle velocities by using a novel\ud fibre optical probe in a fluidized bed of 400 mm I.D. Simulations and experiments were\ud carried out for two different cases using Geldart B type aluminium oxide particles: a\ud freely bubbling fluidized bed and a spout fluidized bed with the presence of droplets. It is\ud demonstrated how the discrete element model can be used to obtain information about the\ud interaction of the discrete phases, i.e. the growth zone in a spout fluidized bed. Eventually\ud this kind of information can be used to obtain closure information required in more coarse\ud grained model

    Comparison of fibre optical measurements and discrete element simulations for the study of granulation in a spout fluidized bed

    Get PDF
    Spout fluidized beds are frequently used for the production of granules or particles through granulation. The products find application in a large variety of applications, for example detergents, fertilizers, pharmaceuticals and food. Spout fluidized beds have a number of advantageous properties, such as a high mobility of the particles, which prevents undesired agglomeration and yields excellent heat transfer properties. The particle growth mechanism in a spout fluidized bed as function of particle-droplet interaction has a profound influence on the particle morphology and thus on the product quality. Nevertheless, little is known about the details of the granulation process. This is mainly due to the fact that the granulation process is not visually accessible. In this work we use fundamental, deterministic models to enable the detailed investigation of granulation behaviour in a spout fluidized bed. A discrete element model is used describing the dynamics of the continuous gas-phase and the discrete droplets and particles. For each element momentum balances are solved. The momentum transfer among each of the three phases is described in detail at the level of individual elements. The results from the discrete element model simulations are compared with local measurements of particle volume fractions as well as particle velocities by using a novel fibre optical probe in a fluidized bed of 400 mm I.D. Simulations and experiments were carried out for three different cases using Geldart B type aluminium oxide particles: a freely bubbling fluidized bed; a spout fluidized bed without the presence of droplets and a spout fluidized bed with the presence of droplets. It is demonstrated how the discrete element model can be used to obtain information about the interaction of the discrete phases, i.e. the growth zone in a spout fluidized bed. Eventually this kind of information can be used to obtain closure information required in more coarse grained models

    NNLO QCD corrections to event shape variables in electron positron annihilation

    Full text link
    Precision studies of QCD at electron-positron colliders are based on measurements of event shapes and jet rates. To match the high experimental accuracy, theoretical predictions to next-to-next-to-leading order (NNLO) in QCD are needed for a reliable interpretation of the data. We report the first calculation of NNLO corrections O(alpha_s^3) to three-jet production and related event shapes, and discuss their phenomenological impact.Comment: Contributed to 2007 Europhysics Conference on High Energy Physics, Manchester, England 19-25 July 200
    • …
    corecore