14,594 research outputs found

    Aging-induced stem cell mutations as drivers for disease and cancer

    Get PDF
    Aging is characterized by a decrease in genome integrity, impaired organ maintenance, and an increased risk of cancer, which coincide with clonal dominance of expanded mutant stem and progenitor cell populations in aging tissues, such as the intestinal epithelium, the hematopoietic system, and the male germline. Here we discuss possible explanations for age-associated increases in the initiation and/or progression of mutant stem/progenitor clones and highlight the roles of stem cell quiescence, replication-associated DNA damage, telomere shortening, epigenetic alterations, and metabolic challenges as determinants of stem cell mutations and clonal dominance in aging

    Identification of the dominant precession damping mechanism in Fe, Co, and Ni by first-principles calculations

    Full text link
    The Landau-Lifshitz equation reliably describes magnetization dynamics using a phenomenological treatment of damping. This paper presents first-principles calculations of the damping parameters for Fe, Co, and Ni that quantitatively agree with existing ferromagnetic resonance measurements. This agreement establishes the dominant damping mechanism for these systems and takes a significant step toward predicting and tailoring the damping constants of new materials.Comment: 4 pages, 1 figur

    Nonlocal feedback in ferromagnetic resonance

    Full text link
    Ferromagnetic resonance in thin films is analyzed under the influence of spatiotemporal feedback effects. The equation of motion for the magnetization dynamics is nonlocal in both space and time and includes isotropic, anisotropic and dipolar energy contributions as well as the conserved Gilbert- and the non-conserved Bloch-damping. We derive an analytical expression for the peak-to-peak linewidth. It consists of four separate parts originated by Gilbert damping, Bloch-damping, a mixed Gilbert-Bloch component and a contribution arising from retardation. In an intermediate frequency regime the results are comparable with the commonly used Landau-Lifshitz-Gilbert theory combined with two-magnon processes. Retardation effects together with Gilbert damping lead to a linewidth the frequency dependence of which becomes strongly nonlinear. The relevance and the applicability of our approach to ferromagnetic resonance experiments is discussed.Comment: 22 pages, 9 figure

    Crack barriers improve the mechanical and thermal properties of non-metallic sinter materials

    Get PDF
    Means of improving the tensile strength of ceramic composites by introducing ductile intermediate layers capable of absorbing the elastic energy at the rupture front are studied. Tests with an Al203 laminate with niobium inclusions showed that crack propagation could be successfully precluded by dissipation of the energy by deformation and/or delamination at the inclusion/matrix interface
    • …
    corecore