423 research outputs found
Memory Effects in Granular Material
We present a combined experimental and theoretical study of memory effects in
vibration-induced compaction of granular materials. In particular, the response
of the system to an abrupt change in shaking intensity is measured. At short
times after the perturbation a granular analog of aging in glasses is observed.
Using a simple two-state model, we are able to explain this short-time
response.
We also discuss the possibility for the system to obey an approximate
pseudo-fluctuation-dissipation theorem relationship and relate our work to
earlier experimental and theoretical studies of the problem.Comment: 5 pages, 4 figures, reference list change
Effect of Isovalent Substitution on the Thermoelectric Properties of the Cu_2ZnGeSe_(4−x)S_x Series of Solid Solutions
Knowledge of structure–property relationships is a key feature of materials design. The control of thermal transport has proven to be crucial for the optimization of thermoelectric materials. We report the synthesis, chemical characterization, thermoelectric transport properties, and thermal transport calculations of the complete solid solution series Cu_2ZnGeSe_(4–x)S_x (x = 0–4). Throughout the substitution series a continuous Vegard-like behavior of the lattice parameters, bond distances, optical band gap energies, and sound velocities are found, which enables the tuning of these properties adjusting the initial composition. Refinements of the special chalcogen positions revealed a change in bonding angles, resulting in crystallographic strain possibly affecting transport properties. Thermal transport measurements showed a reduction in the room-temperature thermal conductivity of 42% triggered by the introduced disorder. Thermal transport calculations of mass and strain contrast revealed that 34% of the reduction in thermal conductivity is due to the mass contrast only and 8% is due to crystallographic strain
Phonon Scattering through a Local Anisotropic Structural Disorder in the Thermoelectric Solid Solution Cu_2Zn_(1−x)Fe_xGeSe_4
Inspired by the promising thermoelectric properties of chalcopyrite-like quaternary chalcogenides, here we describe the synthesis and characterization of the solid solution Cu_2Zn_(1–x)Fe_xGeSe_4. Upon substitution of Zn with the isoelectronic Fe, no charge carriers are introduced in these intrinsic semiconductors. However, a change in lattice parameters, expressed in an elongation of the c/a lattice parameter ratio with minimal change in unit cell volume, reveals the existence of a three-stage cation restructuring process of Cu, Zn, and Fe. The resulting local anisotropic structural disorder leads to phonon scattering not normally observed, resulting in an effective approach to reduce the lattice thermal conductivity in this class of materials
Bond strength dependent superionic phase transformation in the solid solution series Cu_2ZnGeSe_(4-x)S_x
Recently, copper selenides have shown to be promising thermoelectric materials due to their possible
superionic character resulting from mobile copper cations. Inspired by this recent development in the
class of quaternary copper selenides we have focused on the structure-to-property relationships in the
solid solution series Cu_2ZnGeSe_(4-x)S_x. The material exhibits an insulator-to-metal transition at higher
temperatures, with a transition temperature dependent on the sulfur content. However, the lattice
parameters show linear thermal expansion at elevated temperatures only and therefore no indication of
a structural phase transformation. ^(63)Cu nuclear magnetic resonance shows clear indications of Cu
located on at least two distinct sites, which eventually merge into one (apparent) site above the phase
transformation. In this manuscript the temperature dependent lattice parameters and electronic
properties of the solid solution Cu_2ZnGeSe_(4-x)S_x are reported in combination with ^(63)Cu NMR, and an
attempt will be made to relate the nature of the electronic phase transformation to a superionic phase
transformation and a changing covalent character of the lattice upon anion substitution in this class of
materials
Identification of imaging selection patterns in acute ischemic stroke patients and the influence on treatment and clinical trial enrolment decision making
For the STroke Imaging Research (STIR) and VISTA-Imaging Investigators The purpose of this study was to collect precise information on the typical imaging decisions given specific clinical acute stroke scenarios. Stroke centers worldwide were surveyed regarding typical imaging used to work up representative acute stroke patients, make treatment decisions, and willingness to enroll in clinical trials.
STroke Imaging Research and Virtual International Stroke Trials Archive-Imaging circulated an online survey of clinical case vignettes through its website, the websites of national professional societies from multiple countries as well as through email distribution lists from STroke Imaging Research and participating societies. Survey responders were asked to select the typical imaging work-up for each clinical vignette presented. Actual images were not presented to the survey responders. Instead, the survey then displayed several types of imaging findings offered by the imaging strategy, and the responders selected the appropriate therapy and whether to enroll into a clinical trial considering time from onset, clinical presentation, and imaging findings. A follow-up survey focusing on 6 h from onset was conducted after the release of the positive endovascular trials.
We received 548 responses from 35 countries including 282 individual centers; 78% of the centers originating from Australia, Brazil, France, Germany, Spain, United Kingdom, and United States. The specific onset windows presented influenced the type of imaging work-up selected more than the clinical scenario. Magnetic Resonance Imaging usage (27-28%) was substantial, in particular for wake-up stroke. Following the release of the positive trials, selection of perfusion imaging significantly increased for imaging strategy.
Usage of vascular or perfusion imaging by Computed Tomography or Magnetic Resonance Imaging beyond just parenchymal imaging was the primary work-up (62-87%) across all clinical vignettes and time windows. Perfusion imaging with Computed Tomography or Magnetic Resonance Imaging was associated with increased probability of enrollment into clinical trials for 0-3 h. Following the release of the positive endovascular trials, selection of endovascular only treatment for 6 h increased across all clinical vignettes
Mechanical thrombectomy in acute ischemic stroke : Consensus statement by ESO-Karolinska Stroke Update 2014/2015, supported by ESO, ESMINT, ESNR and EAN
The original version of this consensus statement on mechanical thrombectomy was approved at the European Stroke Organisation (ESO)-Karolinska Stroke Update conference in Stockholm, 16-18 November 2014. The statement has later, during 2015, been updated with new clinical trials data in accordance with a decision made at the conference. Revisions have been made at a face-to-face meeting during the ESO Winter School in Berne in February, through email exchanges and the final version has then been approved by each society. The recommendations are identical to the original version with evidence level upgraded by 20 February 2015 and confirmed by 15 May 2015. The purpose of the ESO-Karolinska Stroke Update meetings is to provide updates on recent stroke therapy research and to discuss how the results may be implemented into clinical routine. Selected topics are discussed at consensus sessions, for which a consensus statement is prepared and discussed by the participants at the meeting. The statements are advisory to the ESO guidelines committee. This consensus statement includes recommendations on mechanical thrombectomy after acute stroke. The statement is supported by ESO, European Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), and European Academy of Neurology (EAN).Peer reviewe
Scanning tunneling spectroscopy of high-temperature superconductors
Tunneling spectroscopy played a central role in the experimental verification
of the microscopic theory of superconductivity in the classical
superconductors. Initial attempts to apply the same approach to
high-temperature superconductors were hampered by various problems related to
the complexity of these materials. The use of scanning tunneling
microscopy/spectroscopy (STM/STS) on these compounds allowed to overcome the
main difficulties. This success motivated a rapidly growing scientific
community to apply this technique to high-temperature superconductors. This
paper reviews the experimental highlights obtained over the last decade. We
first recall the crucial efforts to gain control over the technique and to
obtain reproducible results. We then discuss how the STM/STS technique has
contributed to the study of some of the most unusual and remarkable properties
of high-temperature superconductors: the unusual large gap values and the
absence of scaling with the critical temperature; the pseudogap and its
relation to superconductivity; the unprecedented small size of the vortex cores
and its influence on vortex matter; the unexpected electronic properties of the
vortex cores; the combination of atomic resolution and spectroscopy leading to
the observation of periodic local density of states modulations in the
superconducting and pseudogap states, and in the vortex cores.Comment: To appear in RMP; 65 pages, 62 figure
Neurotensin Receptor 1 Is Expressed in Gastrointestinal Stromal Tumors but Not in Interstitial Cells of Cajal
Gastrointestinal stromal tumors (GIST) are thought to derive from the interstitial cells of Cajal (ICC) or an ICC precursor. Oncogenic mutations of the KIT or PDGFRA receptor tyrosine kinases are present in the majority of GIST, leading to ligand-independent activation of the intracellular signal transduction pathways. We previously investigated the gene expression profile in the murine KitK641E GIST model and identified Ntsr1 mRNA, encoding the Neurotensin receptor 1, amongst the upregulated genes. Here we characterized Ntsr1 mRNA and protein expression in the murine KitK641E GIST model and in tissue microarrays of human GIST. Ntsr1 mRNA upregulation in KitK641E animals was confirmed by quantitative PCR. Ntsr1 immunoreactivity was not detected in the Kit positive ICC of WT mice, but was present in the Kit positive hyperplasia of KitK641E mice. In the normal human gut, NTSR1 immunoreactivity was detected in myenteric neurons but not in KIT positive ICC. Two independent tissue microarrays, including a total of 97 GIST, revealed NTSR1 immunoreactivity in all specimens, including the KIT negative GIST with PDGFRA mutation. NTSR1 immunoreactivity exhibited nuclear, cytoplasmic or mixed patterns, which might relate to variable levels of NTSR1 activation. As studies using radio-labeled NTSR1 ligand analogues for whole body tumor imaging and for targeted therapeutic interventions have already been reported, this study opens new perspectives for similar approaches in GIST
myCopter – Enabling Technologies for Personal Aerial Transportation Systems
This paper describes the European Commission Framework 7 funded project myCopter (2011-2014). The project is still at an early stage so the paper starts with the current transportation issues faced by developed countries and describes a means to solve them through the use of personal aerial transportation. The concept of personal air vehicles (PAV) is briefly reviewed and how this project intends to tackle the problem from a different perspective described. It is argued that the key reason that many PAV concepts have failed is because the operational infrastructure and socio- economic issues have not been properly addressed; rather, the start point has been the design of the vehicle itself. Some of the key aspects that would make a personal aerial transport system (PATS) viable include the required infrastructure and associated technologies, the skill levels and machine interfaces needed by the occupant or pilot and the views of society as a whole on the acceptability of such a proposition. The myCopter project will use these areas to explore the viability of PAVs within a PATS. The paper provides an overview of the project structure, the roles of the partners, and hence the available research resources, and some of the early thinking on each of the key project topic areas
- …