31 research outputs found

    Tailoring Spin-Wave Channels in a Reconfigurable Artificial Spin Ice

    Get PDF
    Artificial spin ices are ensembles of geometrically arranged interacting nanomagnets that have shown promising potential for the realization of reconfigurable magnonic crystals. Such systems allow for the manipulation of spin waves on the nanoscale and their potential use as information carriers. However, there are presently two general obstacles to the realization of artificial spin-ice-based magnonic crystals: the magnetic state of artificial spin ices is difficult to reconfigure and the magnetostatic interactions between the nanoislands are often weak, preventing mode coupling. We demonstrate, using micromagnetic modeling, that coupling a reconfigurable artificial spin-ice geometry made of weakly interacting nanomagnets to a soft magnetic underlayer creates a complex system exhibiting dynamically coupled modes. These give rise to spin-wave channels in the underlayer at well-defined frequencies, based on the artificial spin-ice magnetic state, which can be reconfigured. These findings open the door to the realization of reconfigurable magnonic crystals with potential applications for data transport and processing in magnonic-based logic architectures

    Dynamics of reconfigurable artificial spin ice: toward magnonic functional materials

    Get PDF
    Over the past few years, the study of magnetization dynamics in artificial spin ices has become a vibrant field of study. Artificial spin ices are ensembles of geometrically arranged, interacting magnetic nanoislands, which display frustration by design. These were initially created to mimic the behavior in rare earth pyrochlore materials and to study emergent behavior and frustration using two-dimensional magnetic measurement techniques. Recently, it has become clear that it is possible to create artificial spin ices, which can potentially be used as functional materials. In this perspective, we review the resonant behavior of spin ices in the GHz frequency range, focusing on their potential application as magnonic crystals. In magnonic crystals, spin waves are functionalized for logic applications by means of band structure engineering. While it has been established that artificial spin ices can possess rich mode spectra, the applicability of spin ices to create magnonic crystals hinges upon their reconfigurability. Consequently, we describe recent work aiming to develop techniques and create geometries allowing full reconfigurability of the spin ice magnetic state. We also discuss experimental, theoretical, and numerical methods for determining the spectral response of artificial spin ices and give an outlook on new directions for reconfigurable spin ices

    Dynamics of magnetization coupled to a thermal bath of elastic modes

    Full text link
    We study the dynamics of magnetization coupled to a thermal bath of elastic modes using a system plus reservoir approach with realistic magnetoelastic coupling. After integrating out the elastic modes we obtain a self-contained equation for the dynamics of the magnetization. We find explicit expressions for the memory friction kernel and hence, {\em via} the Fluctuation-Dissipation Theorem, for the spectral density of the magnetization thermal fluctuations. For magnetic samples in which the single domain approximation is valid, we derive an equation for the dynamics of the uniform mode. Finally we apply this equation to study the dynamics of the uniform magnetization mode in insulating ferromagnetic thin films. As experimental consequences we find that the fluctuation correlation time is of the order of the ratio between the film thickness, hh, and the speed of sound in the magnet and that the line-width of the ferromagnetic resonance peak should scale as B12hB_1^2h where B1B_1 is the magnetoelastic coupling constant.Comment: Revised version as appeared in print. 12 pages 9 figure
    corecore