1,438 research outputs found

    VARIAZIONI NEL FLUSSO DI CO2 OSSERVATE NEL MARZO-APRILE 2009 IN ITALIA CENTRALE

    Get PDF
    In tutto il mondo nelle aree di collisione tettonica è stata osservata la presenza di sorgenti di acque calde o di gas di origine endogena (Italiano et al., 2001 e riferimenti citati). Il gas emesso più importante sotto il profilo quantitativo è l’anidride carbonica il cui ruolo è stato spesso sottolineato per giustificare la generazione di anomalìe di carattere geochimico osservate nelle acque sotterranee o nelle emissioni gassose. Nell’Italia centro-meridionale esistono numerose emissioni spontanee di anidride carbonica note come mofete o mefite. Nel corso della sequenza sismica del 1997 verificatasi in Umbria-Marche sono state monitorate le caratteristiche fisiche e composizionali di alcune emissioni di CO2 presenti nel territorio interessato dai principali eventi di carattere tettonico (Martinelli e Albarello, 1997). In particolare nel corso del 1997 sono state osservate variazioni di flusso di gas totale nelle emissioni di Monte Castello di Vibio, Umbertide e Massa Martana. Nelle stesse aree sono state osservate variazioni significative di carattere composizionale in grado di confermare la non stazionarietà dell’origine dei gas emessi (Italiano et al., 2004; Italiano et al., 2009 e bibliografia citata). Nel Comune di Massa Martana è localizzata l’emissione spontanea di anidride carbonica di San Faustino. L’emissione principale è captata da una opera di presa composta da una stanza sotterranea e da un insieme di tubi che convogliano il gas verso l’esterno. Alla fine del percorso di tubi è stata installata una strumentazione in grado di misurare la portata del gas. Il sensore è del tipo a “filo caldo”. Altri parametri di carattere ambientale sono monitorati nel sito e nella zona. Nel periodo 2005-2008 sono state osservate variazioni nei valori di portata del gas emesso in parte probabilmente ascrivibili alla attività tettonica della zona. Nel corso del 2009 sono stati affrontati e risolti problemi tecnici di alimentazione elettrica, ripristinata nel corso del mese di marzo. Alla fine del mese di Marzo 2009 e nel mese di aprile 2009 i valori di portata registrati sono stati pari a circa il doppio della normalità. I valori di portata sono poi ridiscesi entro la normalità entro un mese dalla data dell’evento principale della sequenza sismica del 2009 che ha interessato vaste aree dell’Abruzzo. La distanza tra il sito di osservazione e l’area epicentrale dell’evento principale della sequenza simica dell’aprile 2009 è di circa 80 km. Nella letteratura scientifica sono state riportateanomalìe di carattere geofisico e geochimico rilevate a distanze paragonabili a quelle descritte in concomitanza con eventi simici significativi. Fenomeni di possibile degassamento terrestre sono stati rilevati in quasi contemporaneità da altre unità di ricerca in grado di monitorare fenomenologie di area vasta con l’ausilio di tecniche satellitari (Aliano et al., 2009; Tramutoli et al., 2009). Il fenomeno osservato è iniziato alcuni giorni prima dell’evento sismico (Mw=6.3) del 6 aprile 2009 e può essere, in principio, interpretato come esito di processi di deformazione crostale osservati da altre unità di ricerca (e.g. Caporali, 2009). La composizione chimica di gas campionati nell’area epicentrale indica l’esistenza di fenomeni di fratturazione profonda e di liberazione di anidride carbonica di origine non superficiale (Bonfanti et al., 2009 e bibliografia citata, Italiano et al., 2009). La generazione e liberazione di gas di origine profonda è, in principio, in grado di confermare l’esistenza di possibili ulteriori anomalìe osservate nei fluidi della zona (e.g. Plastino et al., 2009). Il fenomeno osservato potrebbe essere interpretato come un fenomeno precursore dell’evento principale registrato e analizzato a posteriori. La possibile applicabilità del fenomeno osservato come strumento utile per migliorare le valutazioni di hazard è discussa e commentata

    Time resolved fission in metal clusters

    Full text link
    We explore from a theoretical point of view pump and probe (P&P) analysis for fission of metal clusters where probe pulses are generalized to allow for scanning various frequencies. We show that it is possible to measure the time the system needs to develop to scission. This is achieved by a proper choice of both delay and frequency of the probe pulse. A more detailed analysis even allows to access the various intermediate stages of the fission process.Comment: 4 pages, 4 figure

    Investigating correlations of local seismicty with anomalous geoelectrical, hydrogeological and geochemical signals jointly recorded in Basilicata Region (Southern Italy)

    Get PDF
    This paper presents the preliminary results analysing the correlation between local seismicity and geoelectrical, hydrogeological and geochemical signals concomitantly recorded in Basilicata Region, one of the most seismically active areas in Southern Italy. The signals were recorded by two stations: Tito and Tramutola. Tito station measures vertically the Self-Potential field (SP) by an array of five no-polarizable electrodes equally spaced with the common electrode at 20 m depth as well as water-level, water-temperature and electrical-conductivity. Tramutola station measures self-potential signals in soil surface, gas flow and water temperature in a thermal-water well, as well as atmospheric barometric pressure and ambient temperature. Correlations were found between the sharp variability of the signals recorded by both stations and the seismic sequence that occurred on September 3 to 4, 2004, allowing us to link these anomalies with the tectonic evolution of the investigated area

    Anomalous fluid emission of a deep borehole in a seismically active area of Northern Apennines (Italy)

    Get PDF
    The Miano borehole, 1047 m deep, is located close to the river Parma in the Northern Apennines, Italy. A measuring station has been installed to observe the discharge of fluids continuously since November 2004. The upwelling fluid of this artesian well is a mixture of thermal water and CH4 as main components. In non-seismogenic areas, a relatively constant fluid emission would be expected, perhaps overlaid with long term variations from that kind of deep reservoir over time. However, the continuous record of the fluid emission, in particular the water discharge, the gas flow rate and the water temperature, show periods of stable values interrupted by anomalous periods of fluctuations in the recorded parameters. The anomalous variations of these parameters are of low amplitude in comparison to the total values but significant in their long-term trend. Meteorological effects due to rain and barometric pressure were not detected in recorded data probably due to reservoir depth and relatively high reservoir overpressure. Influences due to the ambient temperature after the discharge were evaluated by statistical analysis. Our results suggest that recorded changes in fluid emission parameters can be interpreted as a mixing process of different fluid components at depth by variations in pore pressure as a result of seismogenic stress variation. Local seismicity was analyzed in comparison to the fluid physico-chemical data. The analysis supports the idea that an influence on fluid transport conditions due to geodynamic processes exists. Water temperature data show frequent anomalies probably connected with possible precursory phenomena of local seismic events

    Results of gas flux records in the seismically active area of Val d'Agri (Southern Italy)

    Get PDF
    The Val d Agri area is well-known for oil exploration. An old 500 m deep exploration well in the northern part of this area has been used for long-term hydrogeochemical investigations. The well is characterized by a discharge of about 500 L/min of thermal water (27.8°C) and a simultaneous methane gas emission of about 200 L/min. Gas analyses gave evidence that the methane come from a multiple deep reservoir. Continuous records of gas emission showed some anomalous variations occurred during the past three years. The gas flux anomalies were in a distinctive coincidence with self-potential anomalies of one station close to the hydrogeochemical station. The present paper describes the interpretation of these anomalies in relation to the geodynamic activity in the area

    How should the respiration rate be counted in cattle?

    Get PDF
    Respiration rate (RR) is a proficient indicator to measure the health status of cattle. The common method of measurement is to count the number of respiratory cycles each minute based on flank movements. However, there is no consistent method of execution. In previous studies, various methods have been described, including counting flank movements for 15 s, 30 s or 60 s as well as stopping the time for 5 or 10 breaths. We assume that the accuracy of the aforementioned methods differs. Therefore, we compared their precision with an RR sensor, which was used as the reference method in this study. Five scientists from the fields of agricultural science and veterinary medicine quantified the flank movement according to each of the five methods mentioned above. The results showed that with an average RR of 30 breaths per minute (bpm), all methods showed a high correlation to the values of the RR sensor. However, counting breaths for 60 s had the highest level of conformity with the RR sensor (Lin`s concordance correlation coefficient: 0.96) regardless of the level of RR. With rising RR, the inaccuracy increased significantly for the other four investigated methods, especially when counting 5 and 10 breaths. Therefore, we would recommend that counting for 60 s should be used as the standard method for future studies due to its high precision regardless of the level of RR

    Anomalous fluid emission of a deep borehole in a seismically active area of Northern Apennines (Italy)

    Get PDF
    The Miano borehole of 1047 m depth is located close to the river Parma in the Northern Apennines, Italy. A measuring station is installed to observe the discharge of fluids continuously since November 2004. The upwelling fluid of this artesian well is a mixture of thermal water and methane as main components. In non-seismogenic areas, we would expect a relative constant fluid emission perhaps overlaid with long term variations from that kind of deep reservoirs during the time. However, the continuously record of the fluid emission, in particular the water discharge, the gas flow rate and the water temperature, show periods of stable values interrupted by anomalous periods of fluctuations in the recorded parameters. The anomalous variations of these parameters are of low amplitude in comparison to the total values but significant in their long-term trend. Meteorological influences of rain and barometric pressure were not detected in recorded data probably due to reservoir depth and relatively high reservoir overpressure. Influences due to the ambient temperature after the discharge were evaluated by statistical analysis. We consider that recorded changes in fluid emission parameters can be interpreted as a mixing process of different fluid components in depth by variations in pore pressure as result of seismogenic stress variation. Local seismicity was analyzed in comparison to fluid’s physico-chemical data. The analysis supports the idea of an influence to fluid transport conditions due to geodynamic processes exist. Water temperature data show frequent anomalies probably connected with possible precursory phenomena of local seismic events

    Seismogenic-influenced fluid transport on low angle faults to the mofettes of Caprese Michelangelo (Northern Apennines)

    Get PDF
    The reservoirs feeding those mofettes are trapped over-pressurized fluids, discovered by a deep borehole in the near vicinity. Chemical and isotope data of both the venting gases and gases from the drilled well provide indications about their origin. We discuss a fault-valve behavior during the rupture process as responsible mechanism for a co-seismic fluid migration along reactivated fractures zones. A migration of hypocenters towards the surface along the fault gives further indications for a pore pressure diffusion process. At the surface, the mofettes changed their morphological features macroscopically due to this enhanced gas dynamic. The phenomenological observation of post-seismic fluid expulsion 18 months after the seismic crisis suggests the interpretation of a long-term fluid transport process forced by pressure pulse propagation. This result was achieved by a new approach using photographical times series. The proposed model could help to explain a complex scenario of a long-term fluid transport from the trapped fluid reservoir through the seismogenic zone up to the gas emission sites at Caprese Michelangelo

    Time dynamics of background noise in geoelectrical and geochemical signals: an application in a seismic area of Southern Italy

    Get PDF
    We analyse geoelectrical and geochemical time series jointly measured by means of a multiparametric automatic station close to an anomalous fluid emission in Val d’Agri (Basilicata, Italy). The investigated area is located on Southern Apennine chain that in past and recent years was interested by destructive earthquakes. After a complete pre-processing of time series, we analyse the fluctuations triggered by the seasonal cycles and focus our attention on the possible link between geoelectrical and geochemical signals. In order to extract quantitative dynamical information from experimental time series, we detect scaling laws in power spectra that are typical fingerprints of fractional Brownian processes. After this analysis, the problem of the identification of extreme events in the time series has been approached. We consider significant anomalous patterns only when more consecutive values are above/below a fixed threshold in almost two of the time series jointly measured. We give the first preliminary results about the comparison between anomalous patterns detected in geoelectrical and geochemical parameters and the local seismic activity and, finally, analyse the implications with the earthquake prediction problem
    • …
    corecore