1,485 research outputs found

    Long-Term Effects of the Individual Placement and Support Intervention on Employment Status: 6-Year Follow-Up of a Randomized Controlled Trial

    Full text link
    People with mental illness often experience difficulties with reintegration into the workplace, although employment is known to assist these individuals in their recovery process. Traditional approaches of "first train, then place" have been recently replaced by supported employment (SE) methods that carry strategy of "first place, then train." Individual placement and support (IPS) is one of the best-studied methods of SE, which core principles are individualized assistance in rapid job search with consequent placement in a paid employment position. A considerable amount of high-quality evidence supported the superiority of IPS over conventional methods in providing improved employment rates, longer job tenure, as well as higher salaries in competitive job markets. Nonetheless, our knowledge about the IPS-mediated long-term effects is limited. This non-interventional follow-up study of a previously published randomized controlled trial (RCT) called ZhEPP aimed to understand the long-term impact of IPS after 6 years since the initial intervention. Participants from the ZhEPP trial, where 250 disability pensioners with mental illnesses were randomized into either IPS intervention group or treatment as usual group (TAU), were invited to face-to-face interviews, during which employment status, job tenure, workload, and salaries were assessed. One hundred and fourteen individuals agreed to participate in this follow-up study. Although during the first 2 years post-intervention, the IPS group had higher employment rates (40% (IPS) vs. 28% (TAU), p < 0.05 at 24 months), these differences disappeared by the time of follow-up assessments (72 months). The results indicated no substantial differences in primary outcome measures between IPS and TAU groups: employment rate (36 vs. 33%), workload (10.57 vs. 10.07 h per week), job tenure (29 vs. 28 months), and salary (20.21CHF vs. 25.02 CHF). These findings provide important insights regarding the long-term effects of IPS among individuals with mental health illnesses. Further research is required to advance the current knowledge about IPS intervention and its years-long impact

    Mocravimod, a Selective Sphingosine-1-Phosphate Receptor Modulator, in Allogeneic Hematopoietic Stem Cell Transplantation for Malignancy

    Full text link
    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains the sole curative option for patients with acute myelogenous leukemia. Outcomes are limited by leukemia relapse, graft-versus-host disease (GVHD), and abnormal immune reconstitution. Mocravimod (KRP203) is an oral sphingosine-1-phosphate receptor (S1PR) modulator that blocks the signal required by T cells to egress from lymph nodes and other lymphoid organs. Mocravimod retains T cell effector function, a main differentiator to immunosuppressants. In preclinical models, mocravimod improves survival by maintaining graft-versus-leukemia (GVL) activity while reducing GVHD. In patients undergoing allo-HSCT for hematological malignancies, mocravimod is postulated to prevent GVHD by redistributing allogeneic donor T cells to lymphoid tissues while allowing a sufficient GVL effect in the lymphoid, where malignant cells usually reside. The primary objective of this study was to assess the safety and tolerability of mocravimod in patients undergoing allo-HSCT for hematologic malignancies. Secondary objectives were to determine the pharmacokinetic profiles of mocravimod and its active metabolite mocravimod-phosphate in this patient group, as well as to assess GVHD-free, relapse free survival at 6 months after the last treatment. In this 2-part, single- and 2-arm randomized, open-label trial, we evaluated the safety, tolerability, and pharmacokinetics of mocravimod in allo-HSCT recipients (ClinicalTrials.gov identifier NCT01830010). Patients received either 1 mg or 3 mg mocravimod per day on top of standard of care GVHD prophylaxis with either cyclosporine A/methotrexate or tacrolimus/methotrexate. We found that mocravimod can be safely added to standard treatment regimens in patients with hematologic malignancies requiring allo-HSCT. Mocravimod resulted in a significant reduction of circulating lymphocyte numbers and had no negative impact on engraftment and transplantation outcomes. Our results indicate that mocravimod is safe and support a larger study to investigate its efficacy in a homogeneous acute myelogenous leukemia patient population undergoing allo-HSCT

    SiDroForest: a comprehensive forest inventory of Siberian boreal forest investigations including drone-based point clouds, individually labeled trees, synthetically generated tree crowns, and Sentinel-2 labeled image patches

    Get PDF
    The SiDroForest (Siberian drone-mapped forest inventory) data collection is an attempt to remedy the scarcity of forest structure data in the circumboreal region by providing adjusted and labeled tree-level and vegetation plot-level data for machine learning and upscaling purposes. We present datasets of vegetation composition and tree and plot level forest structure for two important vegetation transition zones in Siberia, Russia; the summergreen–evergreen transition zone in Central Yakutia and the tundra–taiga transition zone in Chukotka (NE Siberia). The SiDroForest data collection consists of four datasets that contain different complementary data types that together support in-depth analyses from different perspectives of Siberian Forest plot data for multi-purpose applications. i. Dataset 1 provides unmanned aerial vehicle (UAV)-borne data products covering the vegetation plots surveyed during fieldwork (Kruse et al., 2021, https://doi.org/10.1594/PANGAEA.933263). The dataset includes structure-from-motion (SfM) point clouds and red–green–blue (RGB) and red–green–near-infrared (RGN) orthomosaics. From the orthomosaics, point-cloud products were created such as the digital elevation model (DEM), canopy height model (CHM), digital surface model (DSM) and the digital terrain model (DTM). The point-cloud products provide information on the three-dimensional (3D) structure of the forest at each plot.ii. Dataset 2 contains spatial data in the form of point and polygon shapefiles of 872 individually labeled trees and shrubs that were recorded during fieldwork at the same vegetation plots (van Geffen et al., 2021c, https://doi.org/10.1594/PANGAEA.932821). The dataset contains information on tree height, crown diameter, and species type. These tree and shrub individually labeled point and polygon shapefiles were generated on top of the RGB UVA orthoimages. The individual tree information collected during the expedition such as tree height, crown diameter, and vitality are provided in table format. This dataset can be used to link individual information on trees to the location of the specific tree in the SfM point clouds, providing for example, opportunity to validate the extracted tree height from the first dataset. The dataset provides unique insights into the current state of individual trees and shrubs and allows for monitoring the effects of climate change on these individuals in the future.iii. Dataset 3 contains a synthesis of 10 000 generated images and masks that have the tree crowns of two species of larch (Larix gmelinii and Larix cajanderi) automatically extracted from the RGB UAV images in the common objects in context (COCO) format (van Geffen et al., 2021a, https://doi.org/10.1594/PANGAEA.932795). As machine-learning algorithms need a large dataset to train on, the synthetic dataset was specifically created to be used for machine-learning algorithms to detect Siberian larch species.iv. Dataset 4 contains Sentinel-2 (S-2) Level-2 bottom-of-atmosphere processed labeled image patches with seasonal information and annotated vegetation categories covering the vegetation plots (van Geffen et al., 2021b, https://doi.org/10.1594/PANGAEA.933268). The dataset is created with the aim of providing a small ready-to-use validation and training dataset to be used in various vegetation-related machine-learning tasks. It enhances the data collection as it allows classification of a larger area with the provided vegetation classes. The SiDroForest data collection serves a variety of user communities. The detailed vegetation cover and structure information in the first two datasets are of use for ecological applications, on one hand for summergreen and evergreen needle-leaf forests and also for tundra–taiga ecotones. Datasets 1 and 2 further support the generation and validation of land cover remote-sensing products in radar and optical remote sensing. In addition to providing information on forest structure and vegetation composition of the vegetation plots, the third and fourth datasets are prepared as training and validation data for machine-learning purposes. For example, the synthetic tree-crown dataset is generated from the raw UAV images and optimized to be used in neural networks. Furthermore, the fourth SiDroForest dataset contains S-2 labeled image patches processed to a high standard that provide training data on vegetation class categories for machine-learning classification with JavaScript Object Notation (JSON) labels provided. The SiDroForest data collection adds unique insights into remote hard-to-reach circumboreal forest regions.</p

    Understanding the biases to sepsis surveillance and quality assurance caused by inaccurate coding in administrative health data

    Get PDF
    Purpose Timely and accurate data on the epidemiology of sepsis are essential to inform policy decisions and research priorities. We aimed to investigate the validity of inpatient administrative health data (IAHD) for surveillance and quality assurance of sepsis care. Methods We conducted a retrospective validation study in a disproportional stratified random sample of 10,334 inpatient cases of age ≄ 15 years treated in 2015–2017 in ten German hospitals. The accuracy of coding of sepsis and risk factors for mortality in IAHD was assessed compared to reference standard diagnoses obtained by a chart review. Hospital-level risk-adjusted mortality of sepsis as calculated from IAHD information was compared to mortality calculated from chart review information. Results ICD-coding of sepsis in IAHD showed high positive predictive value (76.9–85.7% depending on sepsis definition), but low sensitivity (26.8–38%), which led to an underestimation of sepsis incidence (1.4% vs. 3.3% for severe sepsis-1). Not naming sepsis in the chart was strongly associated with under-coding of sepsis. The frequency of correctly naming sepsis and ICD-coding of sepsis varied strongly between hospitals (range of sensitivity of naming: 29–71.7%, of ICD-diagnosis: 10.7–58.5%). Risk-adjusted mortality of sepsis per hospital calculated from coding in IAHD showed no substantial correlation to reference standard risk-adjusted mortality (r = 0.09). Conclusion Due to the under-coding of sepsis in IAHD, previous epidemiological studies underestimated the burden of sepsis in Germany. There is a large variability between hospitals in accuracy of diagnosing and coding of sepsis. Therefore, IAHD alone is not suited to assess quality of sepsis care

    Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector

    Get PDF
    Results of a search for H → τ τ decays are presented, based on the full set of proton-proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb−1 and 20.3 fb−1 at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV respectively. All combinations of leptonic (τ → `ÎœÎœÂŻ with ` = e, ”) and hadronic (τ → hadrons Îœ) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standard deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalised to the Standard Model expectation, of ” = 1.43 +0.43 −0.37 is consistent with the predicted Yukawa coupling strength in the Standard Model

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +cÂŻÂŻ)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−sÂŻÂŻÂŻ quark asymmetry

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Search for dark matter in events with heavy quarks and missing transverse momentum in pp collisions with the ATLAS detector

    Get PDF
    This article reports on a search for dark matterpair production in association with bottom or top quarks in20.3fb−1ofppcollisions collected at√s=8TeVbytheATLAS detector at the LHC. Events with large missing trans-verse momentum are selected when produced in associationwith high-momentum jets of which one or more are identifiedas jets containingb-quarks. Final states with top quarks areselected by requiring a high jet multiplicity and in some casesa single lepton. The data are found to be consistent with theStandard Model expectations and limits are set on the massscale of effective field theories that describe scalar and tensorinteractions between dark matter and Standard Model par-ticles. Limits on the dark-matter–nucleon cross-section forspin-independent and spin-dependent interactions are alsoprovided. These limits are particularly strong for low-massdark matter. Using a simplified model, constraints are set onthe mass of dark matter and of a coloured mediator suitableto explain a possible signal of annihilating dark matter
    • 

    corecore