609 research outputs found

    Processing of UHTCMCs

    Get PDF
    There is an increasing demand for advanced materials with temperature capability in highly corrosive environments for aerospace. Rocket nozzles of solid/hybrid rocket motors must survive harsh thermochemical and mechanical environments produced by high performance solid propellants (2700-3500°C). Thermal protection systems (TPS) for space vehicles flying at Mach 7 must withstand projected service temperatures up to 2500°C associated to convective heat fluxes up to 15 MWm-2 and intense mechanical vibrations at launch and re-entry into Earth’s atmosphere. The combination of extremely hot temperatures, chemically aggressive environments and rapid heating/cooling is beyond the capabilities of current materials. As indicated by the previous talk, the main purpose of C3HARME is to design, develop, manufacture, test and validate a new class of out-performing, reliable, cost-effective and scalable Ultra High Temperature Ceramic Matrix Composites (UHTCMCs) based on C fibre preforms enriched with ultra-high temperature ceramics (UHTCs) and capable of in-situ repairing damage induced during operation in severe aerospace environments. Two main applications are envisaged: near-ZERO erosion rocket nozzles that must maintain dimensional stability during firing in combustion chambers, and near-ZERO ablation thermal protection systems enabling hypersonic space vehicles to maintain flight performance. This talk aims at providing an indication of progress to date within Work Package 2, which is focused on the processing of Cf-ZrB2 UHTCMCs. Four primary routes are being investigated, these include: green forming of fibre reinforced UHT ceramics followed by spark plasma sintering; radio-frequency enhanced chemical vapour infiltration of UHTCMCs; reactive melt infiltration of UHTCMCs and polymer infiltration and pyrolysis of UHTCMCs. All four approaches will be outlined and conclusions drawn, plus there will be a brief mention of ongoing work into atomistic modelling of processes at materials interfaces and nanoparticle dispersion with a view to imparting self-healing properties. Acknowledgements: This work has received funding from the European Union’s Horizon 2020 “Research and innovation programme” under grant agreement N°685594 (C3HARME

    Hyperferritinemia without iron overload in patients with bilateral cataracts: a case series

    Get PDF
    Hepatologists and internists often encounter patients with unexplained high serum ferritin concentration. After exclusion of hereditary hemochromatosis and hemosiderosis, rare disorders like hereditary hyperferritinemia cataract syndrome should be considered in the differential diagnosis. This autosomal dominant syndrome, that typically presents with juvenile bilateral cataracts, was first described in 1995 and has an increasing number of recognized molecular defects within a regulatory region of the L-ferritin gene (FTL). CASE PRESENTATION: Two patients (32 and 49-year-old Caucasian men) from our ambulatory clinic were suspected as having this syndrome and a genetic analysis was performed. In both patients, sequencing of the FTL 5' region showed previously described mutations within the iron responsive element (FTL c.33 C > A and FTL c.32G > C). CONCLUSION: Hereditary hyperferritinemia cataract syndrome should be considered in all patients with unexplained hyperferritinemia without signs of iron overload, particularly those with juvenile bilateral cataracts. Liver biopsy and phlebotomy should be avoided in this disorder

    Klinische Farbmessungen

    No full text

    In-vitro-Testung B6-sensibler Anämien

    No full text

    Klinische Farbmessungen

    No full text

    Verhandlungen ärztlicher Gesellschaften

    No full text
    corecore