70 research outputs found

    Toward large-area sub-arcsecond x-ray telescopes II

    Get PDF
    In order to advance significantly scientific objectives, future x-ray astronomy missions will likely call for x-ray telescopes with large aperture areas (≈3 m[superscript 2]) and fine angular resolution (≈1[superscript 2 ]). Achieving such performance is programmatically and technologically challenging due to the mass and envelope constraints of space-borne telescopes and to the need for densely nested grazing-incidence optics. Such an x-ray telescope will require precision fabrication, alignment, mounting, and assembly of large areas (≈600 m2) of lightweight (≈2 kg/m[superscript 2] areal density) high-quality mirrors, at an acceptable cost (≈1 M$/m[superscript 2] of mirror surface area). This paper reviews relevant programmatic and technological issues, as well as possible approaches for addressing these issues-including direct fabrication of monocrystalline silicon mirrors, active (in-space adjustable) figure correction of replicated mirrors, static post-fabrication correction using ion implantation, differential erosion or deposition, and coating-stress manipulation of thin substrates

    Internal segregation and side chain ordering in hairy-rod polypeptide monolayers at the gas/water interface: An x-ray scattering study

    Get PDF
    We report studies of the structure and packing of Langmuirmonolayers (LMs) of polypeptide poly(γ-4-(n-hexadecyloxy)benzyl α,L-glutamate) (C16–O–PBLG) on the surface of water. The molecule is a “hairy rod” and consists of side attachments of hexadecyloxy chains (–O–C16) to the rigid rod-like core made up of α-helical poly(γ-benzyl L-glutamate) (PBLG). Measurements include surface pressure (Π) versus area/monomer (A) isotherms, x-ray specular reflectivity (XR), and grazing incidence diffraction(GID). In contrast to the LM of bare PBLG on water, which undergoes a monolayer/bilayer transition with increasing Π, monolayers of C16–O–PBLG remain stable up to the highest densities. On the basis of XR and GID results, the structure of the C16–O–PBLG monolayer is characterized by the following main features. First, hydrophobicity causes the –O–C16 chains to segregate towards the film/gas interface and away from water and the PBLG cores, which sit parallel to and near the water/film interface. Since the attachment position of some of the side chains is at the core/water interface, the segregation forces these chains into the space between neighboring core rods. Compression associated with increasing Π thickens the film but the internally segregated structure is maintained for all Π (i.e., >∼30 dyne/cm). Second, the C16–O–PBLG rods form domains in which the rods are aligned parallel to each other and to the interface. The correlation length for the interhelix positional order of the rods is short and typically comparable to or less than the length of the rods. With increasing Π the spacing d between nearest-neighbor rods decreases linearly with A at high Π, indicating a direct correspondence between the macroscopic compressibility and the microscopic interhelix compressibility. Third, as Π increases past ∼5 dyne/cm, the local packing of tethered –O–C16 chains displays the same herringbone (HB) order that is common for high-density bulk and monolayer phases of alkyl chains. Various features of the observed GID peaks also imply that the HB order of –O–C16 chains is oriented with respect to the helical axes of aligned PBLG cores. We propose that the HB order is established initially by one-dimensionally confined chains between aligned rods at low Π and grows laterally with compression

    High-precision figure correction of x-ray telescope optics using ion implantation

    Get PDF
    ABSTRACT Achieving both high resolution and large collection area in the next generation of x-ray telescopes requires highly accurate shaping of thin mirrors, which is not achievable with current technology. Ion implantation offers a promising method of modifying the shape of mirrors by imparting internal stresses in a substrate, which are a function of the ion species and dose. This technique has the potential for highly deterministic substrate shape correction using a rapid, low cost process. Wafers of silicon and glass (D-263 and BK-7) have been implanted with Si+ ions at 150 keV, and the changes in shape have been measured using a Shack-Hartmann metrology system. We show that a uniform dose over the surface repeatably changes the spherical curvature of the substrates, and we show correction of spherical curvature in wafers. Modeling based on experiments with spherical curvature correction shows that ion implantation could be used to eliminate higher-order shape errors, such as astigmatism and coma, by using a spatially-varying implant dose. We will report on progress in modelling and experimental tests to eliminate higher-order shape errors. In addition, the results of experiments to determine the thermal and temporal stability of implanted substrates will be reported
    corecore