23 research outputs found

    Mass spectrometric quantification of Candida albicans surface proteins to identify new diagnostic markers and targets for vaccine development

    Get PDF
    In his research Heilmann sought to understand how the proteins on the cell surface of the pathogenic fungus Candida albicans change in response to their environment, especially with regard to infections. This knowledge will help to identify new targets for the development of new antifungal agents and be useful for the development of a vaccine. The most important conclusion of his research is that although the cell wall and secreted proteome is highly dynamic, a core set of proteins are essential at all times

    Growth-dependent secretome of Candida utilis

    No full text
    Recently, the food yeast Candida utilis has emerged as an excellent host for production of heterologous proteins. Since secretion of the recombinant product is advantageous for its purification, we characterized the secreted proteome of C. utilis. Cells were cultivated to the exponential or stationary growth phase, and the proteins in the medium were identified by MS. In parallel, a draft genome sequence of C. utilis strain DSM 2361 was determined by massively parallel sequencing. Comparisons of protein and coding sequences established that C. utilis is not a member of the CUG clade of Candida species. In total, we identified 37 proteins in the culture solution, 17 of which were exclusively present in the stationary phase, whereas three proteins were specific to the exponential growth phase. Identified proteins represented mostly carbohydrate-active enzymes associated with cell wall organization, while no proteolytic enzymes and only a few cytoplasmic proteins were detected. Remarkably, cultivation in xylose-based medium generated a protein pattern that diverged significantly from glucose-grown cells, containing the invertase Inv1 as the major extracellular protein, particularly in its highly glycosylated S-form (slow-migrating). Furthermore, cultivation without ammonium sulfate induced the secretion of the asparaginase Asp3. Comparisons of the secretome of C. utilis with those of Kluyveromyces lactis and Pichia pastoris, as well as with those of the human fungal pathogens Candida albicans and Candida glabrata, revealed a conserved set of 10 and six secretory proteins, respectively

    Mass spectrometric analysis of the secretome of Candida albicans

    No full text
    The pathogenic fungus Candida albicans secretes a considerable number of hydrolases and other proteins. In-depth studies of the C. albicans secretome could thus provide new candidates for diagnostic markers and vaccine development. We compared various growth conditions differing in pH, temperature and the presence of the hyphal inducer N-acetylglucosamine. The polypeptide content of the growth media was ca. 0.1-0.2% of the total biomass. Using LC-tandem mass spectrometry, we identified 44 secretory proteins, the transmembrane protein Msb2, six secretory pathway-associated proteins and 28 predicted cytosolic proteins. Many secretory proteins are wall-related, suggesting that their presence in the growth medium is at least partially due to accidental release from the walls. Als3, Csa2, Rbt4, Sap4 and Sap6 were enriched in the medium of hyphal cultures; Bgl2, Cht3, Dag7, Eng1, Pir1, Rbe1, Scw11, Sim1/Sun42, Xog1 and Ywp1 in the medium of yeast cells; and Plb4.5 in pH 4 medium. Seven proteins (Cht3, Mp65, Orf19.5063/Coi1, Scw11, Sim1, Sun41 and Tos1) were consistently present under all conditions tested. These observations indicate that C. albicans tightly regulates its secretome. Mp65, Sun41, and Tos1 were each predicted to contain at least one highly immunogenic peptide. In total, we identified 29 highly immunogenic peptides originating from 18 proteins, including two members of the family of secreted aspartyl proteases. Fifty-six peptides were identified as proteotypic and will be useful for quantification purposes. In summary, the number of identified secretory proteins in the growth medium has been substantially extended, and growth conditions strongly affect the composition of the secretome

    A systematic study of the cell wall composition of Kluyveromyces lactis

    No full text
    In many ascomycetous yeasts, the cell wall is composed of two main types of macromolecules: (a) polysaccharides, with a high content of β-1,6- and β-1,3-linked glucan chains and minor amounts of chitin; and (b) cell wall proteins of different types. Synthesis and maintenance of these macromolecules respond to environmental changes, which are sensed by the cell wall integrity (CWI) signal transduction pathway. We here present a first systematic analysis of the cell wall composition of the milk yeast, Kluyveromyces lactis. Electron microscopic analyses revealed that exponentially growing cells of K. lactis supplied with glucose as a carbon source have a wall thickness of 64 nm, as compared to 105 nm when growing on 3% ethanol. Despite their increased wall thickness, ethanol-grown cells were more sensitive to the presence of zymolyase in the growth medium. Mass spectrometric analysis identified 22 covalently linked cell wall proteins, including 19 GPI-modified proteins and two Pir wall proteins. Importantly, the composition of the cell wall glycoproteome depended on carbon source and growth phase. Our results clearly illustrate the dynamic nature of the cell wall of K. lactis and provide a firm base for studying its regulation

    Mutations in SNF1 complex genes affect yeast cell wall strength

    No full text
    The trimeric SNF1 complex from Saccharomyces cerevisiae, a homolog of mammalian AMP-activated kinase, has been primarily implicated in signaling for the utilization of alternative carbon sources to glucose. We here find that snf1 deletion mutants are hypersensitive to different cell wall stresses, such as the presence of Calcofluor white, Congo red, Zymolyase or the glucan synthase inhibitor Caspofungin in the growth medium. They also have a thinner cell wall. Caspofungin treatment triggers the phosphorylation of the catalytic Snf1 kinase subunit at Thr210 and removal of this phosphorylation site by mutagenesis (Snf1-T210A) abolishes the function of Snf1 in cell wall integrity. Deletion of the PFK1 gene encoding the α-subunit of the heterooctameric yeast phosphofructokinase suppresses the cell wall phenotypes of a snf1 deletion, which suggests a compensatory effect of central carbohydrate metabolism. Epistasis analyses with mutants in cell wall integrity (CWI) signaling confirm that the SNF1 complex and the CWI pathway independently affect yeast cell integrity
    corecore