4 research outputs found

    Finding Nano: Challenges Involved in Monitoring the Presence and Fate of Engineered Titanium Dioxide Nanoparticles in Aquatic Environments

    No full text
    In recent years, titanium dioxide (TiO2) has increasingly been used as an inorganic ultraviolet (UV) filter for sun protection. However, nano-TiO2 may also pose risks to the health of humans and the environment. Thus, to adequately assess its potential adverse effects, a comprehensive understanding of the behaviour and fate of TiO2 in different environments is crucial. Advances in analytical and modelling methods continue to improve researchers’ ability to quantify and determine the state of nano-TiO2 in various environments. However, due to the complexity of environmental and nanoparticle factors and their interplay, this remains a challenging and poorly resolved feat. This paper aims to provide a focused summary of key particle and environmental characteristics that influence the behaviour and fate of sunscreen-derived TiO2 in swimming pool water and natural aquatic environments and to review the current state-of-the-art of single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) approaches to detect and characterise TiO2 nanoparticles in aqueous media. Furthermore, it critically analyses the capability of existing fate and transport models to predict environmental TiO2 levels. Four particle and environmental key factors that govern the fate and behaviour of TiO2 in aqueous environments are identified. A comparison of SP-ICP-MS studies reveals that it remains challenging to detect and characterise engineered TiO2 nanoparticles in various matrices and highlights the need for the development of new SP-ICP-MS pre-treatment and analysis approaches. This review shows that modelling studies are an essential addition to experimental studies, but they still lack in spatial and temporal resolution and mostly exclude surface transformation processes. Finally, this study identifies the use of Bayesian Network-based models as an underexplored but promising modelling tool to overcome data uncertainties and incorporates interconnected variables

    Developing a Preliminary Causal Loop Diagram for Understanding the Wicked Complexity of the COVID-19 Pandemic

    No full text
    COVID-19 is a wicked problem for policy makers internationally as the complexity of the pandemic transcends health, environment, social and economic boundaries. Many countries are focusing on two key responses, namely virus containment and financial measures, but fail to recognise other aspects. The systems approach, however, enables policy makers to design the most effective strategies and reduce the unintended consequences. To achieve fundamental change, it is imperative to firstly identify the "right" interventions (leverage points) and implement additional measures to reduce negative consequences. To do so, a preliminary causal loop diagram of the COVID-19 pandemic was designed to explore its influence on socio-economic systems. In order to transcend the "wait and see" approach, and create an adaptive and resilient system, governments need to consider "deep" leverage points that can be realistically maintained over the long-term and cause a fundamental change, rather than focusing on "shallow" leverage points that are relatively easy to implement but do not result in significant systemic change
    corecore