10 research outputs found

    BH3-Only protein bmf is required for the maintenance of glucose homeostasis in an in vivo model of HNF1α-MODY diabetes

    No full text
    Heterozygous loss-of-function mutations in the hepatocyte nuclear factor 1α (HNF-1α) gene can lead to diminished amounts of functional HNF-1α, resulting in the onset of a particularly severe form of maturity-onset diabetes of the young (MODY). We have previously shown that induction of a dominant-negative mutant of HNF-1α (DNHNF-1α) results in the activation of the bioenergetic stress sensor AMP-activated protein kinase (AMPK), preceding the onset of apoptosis and the induction of pro-apoptotic Bcl-2 homology domain-3-only protein Bmf (Bcl-2-modifying factor) as a mediator of DNHNF-1α-induced apoptosis. Through the knockout of bmf in a transgenic mouse model with DNHNF-1α suppression of HNF-1α function in pancreatic beta-cells, this study aimed to examine the effect of loss-of-function of this BH3-only protein on the disease pathology and progression, and further elucidate the role of Bmf in mediating DNHNF-1α-induced beta-cell loss. Morphological analysis revealed an attenuation in beta-cell loss in bmf-deficient diabetic male mice and preserved insulin content. Surprisingly, bmf deficiency was found to exacerbate hyperglycemia in both diabetic male and hyperglycemic female mice, and ultimately resulted in a decreased glucose-stimulated insulin response, implicating a role for Bmf in glucose homeostasis regulation independent of an effect on beta-cell loss. Collectively, our data demonstrate that Bmf contributes to the decline in beta-cells in a mouse model of HNF1A-MODY but is also required for the maintenance of glucose homeostasis in vivo.</p

    ER stress signaling has an activating transcription factor 6α (ATF6)-dependent "off-switch"

    No full text
    In response to an accumulation of unfolded proteins in the endoplasmic reticulum (ER) lumen, three ER transmembrane signaling proteins, inositol-requiring enzyme 1 (IRE1), PRKR-like ER kinase (PERK), and activating transcription factor 6α (ATF6α), are activated. These proteins initiate a signaling and transcriptional network termed the unfolded protein response (UPR), which re-establishes cellular proteostasis. When this restoration fails, however, cells undergo apoptosis. To investigate cross-talk between these different UPR enzymes, here we developed a high-content live cell screening platform to image fluorescent UPR-reporter cell lines derived from human SH-SY5Y neuroblastoma cells in which different ER stress signaling proteins were silenced through lentivirus-delivered shRNA constructs. We observed that loss of ATF6 expression results in uncontrolled IRE1-reporter activity and increases X box-binding protein 1 (XBP1) splicing. Transient increases in both IRE1 mRNA and IRE1 protein levels were observed in response to ER stress, suggesting that IRE1 up-regulation is a general feature of ER stress signaling and was further increased in cells lacking ATF6 expression. Moreover, overexpression of the transcriptionally active N-terminal domain of ATF6 reversed the increases in IRE1 levels. Furthermore, inhibition of IRE1 kinase activity or of downstream JNK activity prevented an increase in IRE1 levels during ER stress, suggesting that IRE1 transcription is regulated through a positive feed-forward loop. Collectively, our results indicate that from the moment of activation, IRE1 signaling during ER stress has an ATF6-dependent "off-switch." </p

    Single-cell time-lapse imaging of intracellular O2 in response to metabolic inhibition and mitochondrial cytochrome-c release

    No full text
    The detection of intracellular molecular oxygen (O2) levels is important for understanding cell physiology, cell death, and drug effects, and has recently been improved with the development of oxygen-sensitive probes that are compatible with live cell time-lapse microscopy. We here provide a protocol for the use of the nanoparticle probe MitoImage-MM2 to monitor intracellular oxygen levels by confocal microscopy under baseline conditions, in response to mitochondrial toxins, and following mitochondrial cytochrome-c release. We demonstrate that the MitoImage-MM2 probe, which embeds Pt(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin as oxygen sensor and poly(9,9-dioctylfluorene) as an O2-independent component, enables quantitative, ratiometric time-lapse imaging of intracellular O2. Multiplexing with tetra-methyl-rhodamine-methyl ester in HeLa cervical cancer cells showed significant increases in intracellular O2 accompanied by strong mitochondrial depolarization when respiratory chain complexes III or IV were inhibited by Antimycin A or sodium azide, respectively, and when cells were maintained at 'physiological' tissue O2 levels (5% O2). Multiplexing also allowed us to monitor intracellular O2 during the apoptotic signaling process of mitochondrial outer membrane permeabilization in HeLa expressing cytochrome-c-eGFP, and demonstrated that mitochondria post cytochrome-c release are able to retain their capacity to respire at physiological O2 despite a decrease in mitochondrial membrane potential.</p

    AMPK preferentially depresses retrograde transport of axonal mitochondria during localised nutrient deprivation

    No full text
    Mitochondrial clusters are found at regions of high energy demand, allowing cells to meet local metabolic requirements while maintaining neuronal homeostasis. AMP-activated protein kinase (AMPK), a key energy stress sensor, responds to increases in AMP/ATP ratio by activating multiple signalling cascades to overcome the energetic deficiency. In many neurological conditions, the distal axon experiences energetic stress independent of the soma. Here, we used microfluidic devices to physically isolate these two neuronal structures and to investigate whether localised AMPK signalling influenced axonal mitochondrial transport. Nucleofection of primary cortical neurons, derived from E16 mouse embryos (both sexes), with mito-GFP allowed monitoring of the transport dynamics of mitochondria within the axon, by confocal microscopy.Pharmacological activation of AMPK at the distal axon (0.1 mM AICAR) induced a depression of the mean frequency, velocity and distance of retrograde mitochondrial transport in the adjacent axon. Anterograde mitochondrial transport was less sensitive to local AMPK stimulus, with the imbalance of bi-directional mitochondrial transport resulting in accumulation of mitochondria at the region of energetic stress signal. Mitochondria in the axon-rich white matter of the brain rely heavily on lactate as a substrate for ATP synthesis. Interestingly, localised inhibition of lactate uptake (10 nM AR-C155858) reduced mitochondrial transport in the adjacent axon in all parameters measured, similar to that observed by AICAR treatment. Co-addition of compound C restored all parameters measured to baseline levels, confirming the involvement of AMPK. This study highlights a role of AMPK signalling in the depression of axonal mitochondrial mobility during localised energetic stress.</p

    Transcriptional CDK inhibitors CYC065 and THZ1 induce apoptosis in glioma stem cells derived from recurrent GBM

    No full text
    Glioma stem cells (GSCs) are tumour initiating cells which contribute to treatment re-sistance, temozolomide (TMZ) chemotherapy and radiotherapy, in glioblastoma (GBM), the most aggressive adult brain tumour. A major contributor to the uncontrolled tumour cell proliferation in GBM is the hyper activation of cyclin‐dependent kinases (CDKs). Due to resistance to standard of care, GBMs relapse in almost all patients. Targeting GSCs using transcriptional CDK inhibitors, CYC065 and THZ1 is a potential novel treatment to prevent relapse of the tumour. TCGA‐GBM data analysis has shown that the GSC markers, CD133 and CD44 were significantly upregulated in GBM patient tumours compared to non‐tumour tissue. CD133 and CD44 stem cell markers were also expressed in gliomaspheres derived from recurrent GBM tumours. Light Sheet Florescence Microscopy (LSFM) further revealed heterogeneous expression of these GSC markers in glio-maspheres. Gliomaspheres from recurrent tumours were highly sensitive to transcriptional CDK inhibitors, CYC065 and THZ1 and underwent apoptosis while being resistant to TMZ. Apoptotic cell death in GSC subpopulations and non‐stem tumour cells resulted in sphere disruption. Collec-tively, our study highlights the potential of these novel CKIs to induce cell death in GSCs from recurrent tumours, warranting further clinical investigation

    Single-cell imaging of the heat-shock response in colon cancer cells suggests that magnitude and length rather than time of onset determines resistance to apoptosis.

    No full text
    Targeting the proteasome is a valuable approach for cancer therapy, potentially limited by pro-survival pathways that are induced in parallel to cell death. Whether these pro-survival pathways are activated in all cells, show different activation kinetics in sensitive versus resistant cells or interact functionally with cell death pathways is unknown. We monitored activation of the heat-shock response (HSR), a key survival pathway induced by proteasome inhibition, relative to apoptosis activation in HCT116 colon cancer cells expressing enhanced green fluorescent protein (EGFP) under the control of the HSP70 promoter. Single-cell and high-content time-lapse imaging of epoxomicin treatment revealed that neither basal activity nor the time of onset of the HSR differed between resistant and sensitive populations. However, resistant cells had significantly higher and prolonged reporter activity than those that succumbed to cell death. p53 deficiency protected against cell death but failed to modulate the HSR. By contrast, inhibition of the HSR significantly increased the cytotoxicity of epoxomicin. Our data provide novel insights into the kinetics and heterogeneity of the HSR during proteasome inhibition, suggesting that the HSR modulates cell death signalling unidirectionally.</p

    The anti-inflammatory compound candesartan cilexetil improves neurological outcomes in a mouse model of neonatal hypoxia

    No full text
    Recent studies suggest that mild hypoxia-induced neonatal seizures can trigger an acute neuroinflammatory response leading to long-lasting changes in brain excitability along with associated cognitive and behavioral deficits. The cellular elements and signaling pathways underlying neuroinflammation in this setting remain incompletely understood but could yield novel therapeutic targets. Here we show that brief global hypoxia-induced neonatal seizures in mice result in transient cytokine production, a selective expansion of microglia and long-lasting changes to the neuronal structure of pyramidal neurons in the hippocampus. Treatment of neonatal mice after hypoxia-seizures with the novel anti-inflammatory compound candesartan cilexetil suppressed acute seizure-damage and mitigated later-life aggravated seizure responses and hippocampus-dependent learning deficits. Together, these findings improve our understanding of the effects of neonatal seizures and identify potentially novel treatments to protect against short and long-lasting harmful effects. </p

    Comparative analysis of deeply phenotyped GBM cohorts of 'short-term' and 'long-term' survivors

    No full text
    Background: Glioblastoma (GBM) is an aggressive brain cancer that typically results in death in the first 15 months after diagnosis. There have been limited advances in finding new treatments for GBM. In this study, we investigated molecular differences between patients with extremely short (≤ 9 months, Short term survivors, STS) and long survival (≥ 36 months, Long term survivors, LTS). Methods: Patients were selected from an in-house cohort (GLIOTRAIN-cohort), using defined inclusion criteria (Karnofsky score > 70; age Results: Transcriptomic analysis of tumour samples identified cilium gene signatures as enriched in LTS. Moreover, Immunohistochemical analysis confirmed the presence of cilia in the tumours of LTS. Notably, reverse phase protein array analysis (RPPA) demonstrated increased phosphorylated GAB1 (Y627), SRC (Y527), BCL2 (S70) and RAF (S338) protein expression in STS compared to LTS. Next, we identified 25 unique master regulators (MR) and 13 transcription factors (TFs) belonging to ontologies of integrin signalling and cell cycle to be upregulated in STS. Conclusion: Overall, comparison of STS and LTS GBM patients, identifies novel biomarkers and potential actionable therapeutic targets for the management of GBM.</p

    AMPK-regulated miRNA-210-3p is activated during ischaemic neuronal injury and modulates P13K-p70S6K signalling

    No full text
    Progressive neuronal injury following ischaemic stroke is associated with glutamate-induced depolarization, energetic stress and activation of AMP-activated protein kinase (AMPK). We here identify a molecular signature associated with neuronal AMPK activation, as a critical regulator of cellular response to energetic stress following ischaemia. We report a robust induction of microRNA miR-210-3p both in vitro in primary cortical neurons in response to acute AMPK activation and following ischaemic stroke in vivo. Bioinformatics and reverse phase protein array analysis of neuronal protein expression changes in vivo following administration of a miR-210-3p mimic revealed altered expression of phosphatase and tensin homolog (PTEN), 3-phosphoinositide-dependent protein kinase 1 (PDK1), ribosomal protein S6 kinase (p70S6K) and ribosomal protein S6 (RPS6) signalling in response to increasing miR-210-3p. In vivo, we observed a corresponding reduction in p70S6K activity following ischaemic stroke. Utilizing models of glutamate receptor over-activation in primary neurons, we demonstrated that induction of miR-210-3p was accompanied by sustained suppression of p70S6K activity and that this effect was reversed by miR-210-3p inhibition. Collectively, these results provide new molecular insight into the regulation of cell signalling during ischaemic injury, and suggest a novel mechanism whereby AMPK regulates miR-210-3p to control p70S6K activity in ischaemic stroke and excitotoxic injury.<br

    Increased Fusobacterium tumoural abundance affects immunogenicity in mucinous colorectal cancer and may be associated with improved clinical outcome

    No full text
    There is currently an urgent need to identify factors predictive of immunogenicity in colorectal cancer (CRC). Mucinous CRC is a distinct histological subtype of CRC, associated with a poor response to chemotherapy. Recent evidence suggests the commensal facultative anaerobe Fusobacterium may be especially prevalent in mucinous CRC. The objectives of this study were to assess the association of Fusobacterium abundance with immune cell composition and prognosis in mucinous CRC. Our study included two independent colorectal cancer patient cohorts, The Cancer Genome Atlas (TCGA) cohort, and a cohort of rectal cancers from the Beaumont RCSI Cancer Centre (BRCC). Multiplexed immunofluorescence staining of a tumour microarray (TMA) from the BRCC cohort was undertaken using Cell DIVE technology. Our cohorts included 87 cases (13.3%) of mucinous and 565 cases (86.7%) of non-mucinous CRC. Mucinous CRC in the TCGA dataset was associated with an increased proportion of CD8+lymphocytes (p=0.018), regulatory T-cells (p=0.001) and M2 macrophages (p=0.001). In the BRCC cohort, mucinous RC was associated with enhanced CD8+lymphocyte (p=0.022), regulatory T-cell (p=0.047), and B-cell (p=0.025) counts. High Fusobacterium abundance was associated with an increased proportion of CD4+lymphocytes (p=0.031) and M1 macrophages (p=0.006), whilst M2 macrophages (p=0.043) were underrepresented in this cohort. Patients with increased Fusobacterium relative abundance in our mucinous CRC TCGA cohort tended to have better clinical outcomes (DSS: likelihood ratio p=0.04, logrank p=0.052). Fusobacterium abundance may be associated with improved outcomes in mucinous CRC, possibly due to a modulatory effect on the host immune response.  Key messages  • Increased Fusobacterium relative abundance was not found to be associated with microsatellite instability in mucinous CRC. • Increased Fusobacterium relative abundance was associated with an M2/M1 macrophage switch, which is especially significant in mucinous CRC, where M2 macrophages are overexpressed.  • Increased Fusobacterium relative abundance was associated with a significant improvement in disease specific survival in mucinous CRC.  • Our findings were validated at a protein level within our own in house mucinous and non-mucinous rectal cancer cohorts </p
    corecore