2,639 research outputs found
Achieving equity through 'gender autonomy': the challenges for VET policy and practice
This paper is based on research carried out in an EU Fifth Framework project on 'Gender and Qualification'. The research partners from five European countries investigated the impact of gender segregation in European labour markets on vocational education and training, with particular regard to competences and qualifications. The research explored the part played by gender in the vocational education and training experiences of (i) young adults entering specific occupations in child care, electrical engineering and food preparation/service (ii) adults changing occupations
Spin-asymmetric Josephson effect
The Josephson effect is a manifestation of the macroscopic phase coherence of
superconductors and superfluids. We propose that with ultracold Fermi gases one
can realise a spin-asymmetric Josephson effect in which the two spin components
of a Cooper pair are driven asymmetrically - corresponding to driving a
Josephson junction of two superconductors with different voltages V_\uparrow
and V_\downarrow for spin up and down electrons, respectively. We predict that
the spin up and down components oscillate at the same frequency but with
different amplitudes. Our results reveal that the standard description of the
Josephson effect in terms of bosonic pair tunnelling is insufficient. We
provide an intuitive interpretation of the Josephson effect as interference in
Rabi oscillations of pairs and single particles, the latter causing the
asymmetry.Comment: Article: 4 pages, 3 figures. Supplementary material: 12 pages, 7
figure
Self-localization of magnon Bose-Einstein condensates in the ground state and on excited levels: from harmonic to box-like trapping potential
Long-lived coherent spin precession of 3He-B at low temperatures around 0.2
Tc is a manifestation of Bose-Einstein condensation of spin-wave excitations or
magnons in a magnetic trap which is formed by the order-parameter texture and
can be manipulated experimentally. When the number of magnons increases, the
orbital texture reorients under the influence of the spin-orbit interaction and
the profile of the trap gradually changes from harmonic to a square well, with
walls almost impenetrable to magnons. This is the first experimental example of
Bose condensation in a box. By selective rf pumping the trap can be populated
with a ground-state condensate or one at any of the excited energy levels. In
the latter case the ground state is simultaneously populated by relaxation from
the exited level, forming a system of two coexisting condensates.Comment: 4 pages, 5 figure
Novel Data Acquisition System for Silicon Tracking Detectors
We have developed a novel data acquisition system for measuring tracking
parameters of a silicon detector in a particle beam. The system is based on a
commercial Analog-to-Digital VME module and a PC Linux based Data Acquisition
System. This DAQ is realized with C++ code using object-oriented techniques.
Track parameters for the beam particles were reconstructed using off-line
analysis code and automatic detector position alignment algorithm.
The new DAQ was used to test novel Czochralski type silicon detectors. The
important silicon detector parameters, including signal size distributions and
signal to noise distributions, were successfully extracted from the detector
under study. The efficiency of the detector was measured to be 95 %, the
resolution about 10 micrometers, and the signal to noise ratio about 10.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, Ca, USA, March 2003, 6 pages, LaTeX, 5 eps figures. PSN
TUGP00
Superfluid vortex front at T -> 0: Decoupling from the reference frame
Steady-state turbulent motion is created in superfluid 3He-B at low
temperatures in the form of a turbulent vortex front, which moves axially along
a rotating cylindrical container of 3He-B and replaces vortex-free flow with
vortex lines at constant density. We present the first measurements on the
thermal signal from dissipation as a function of time, recorded at 0.2 Tc
during the front motion, which is monitored using NMR techniques. Both the
measurements and the numerical calculations of the vortex dynamics show that at
low temperatures the density of the propagating vortices falls well below the
equilibrium value, i.e. the superfluid rotates at a smaller angular velocity
than the container. This is the first evidence for the decoupling of the
superfluid from the container reference frame in the zero-temperature limit.Comment: 4 pages, 4 figure
Nanoelectronic thermometers optimised for sub-10 millikelvin operation
We report the cooling of electrons in nanoelectronic Coulomb blockade
thermometers below 4 mK. Above 7 mK the devices are in good thermal contact
with the environment, well isolated from electrical noise, and not susceptible
to self-heating. This is attributed to an optimised design that incorporates
cooling fins with a high electron-phonon coupling and on-chip electronic
filters, combined with a low-noise electronic measurement setup. Below 7 mK the
electron temperature is seen to diverge from the ambient temperature. By
immersing a Coulomb Blockade Thermometer in the 3He/4He refrigerant of a
dilution refrigerator, we measure a lowest electron temperature of 3.7 mK.Comment: 11 pages, 4 figures. (Fixed fitted saturation T_e on p9
Mutations in the U11/U12-65K protein associated with isolated growth hormone deficiency lead to structural destabilization and impaired binding of U12 snRNA
Mutations in the components of the minor spliceosome underlie several human diseases. A subset of patients with isolated growth hormone deficiency (IGHD) harbors mutations in the RNPC3 gene, which encodes the minor spliceosome-specific U11/U12-65K protein. Although a previous study showed that IGHD patient cells have defects in U12-type intron recognition, the biochemical effects of these mutations on the 65K protein have not been characterized. Here, we show that a proline-to-threonine missense mutation (P474T) and a nonsense mutation (R502X) in the C-terminal RNA recognition motif (C-RRM) of the 65K protein impair the binding of 65K to U12 and U6atac snRNAs. We further show that the nonsense allele is targeted to the nonsense-mediated decay (NMD) pathway, but in an isoform-specific manner, with the nuclear-retained 65K long-3'UTR isoform escaping the NMD pathway. In contrast, the missense P474T mutation leads, in addition to the RNA-binding defect, to a partial defect in the folding of the C-RRM and reduced stability of the full-length protein, thus reducing the formation of U11/U12 di-snRNP complexes. We propose that both the C-RRM folding defect and NMD-mediated decrease in the levels of the U11/U12-65K protein reduce formation of the U12-type intron recognition complex and missplicing of a subset of minor introns leading to pituitary hypoplasia and a subsequent defect in growth hormone secretion.Peer reviewe
- …