47 research outputs found

    Interaction of Mesoporous Silica Nanoparticles with Human Red Blood Cell Membranes: Size and Surface Effects

    Get PDF
    The interactions of mesoporous silica nanoparticles (MSNs) of different particle sizes and surface properties with human red blood cell (RBC) membranes were investigated by membrane filtration, flow cytometry, and various microscopic techniques. Small MCM-41-type MSNs (∼100 nm) were found to adsorb to the surface of RBCs without disturbing the membrane or morphology. In contrast, adsorption of large SBA-15-type MSNs (∼600 nm) to RBCs induced a strong local membrane deformation leading to spiculation of RBCs, internalization of the particles, and eventual hemolysis. In addition, the relationship between the degree of MSN surface functionalization and the degree of its interaction with RBC, as well as the effect of RBC−MSN interaction on cellular deformability, were investigated. The results presented here provide a better understanding of the mechanisms of RBC−MSN interaction and the hemolytic activity of MSNs and will assist in the rational design of hemocompatible MSNs for intravenous drug delivery and in vivo imaging

    Search for charged Higgs bosons in the H± → τ±ν_τ decay channel in proton-proton collisions at √s= 13 TeV

    Get PDF
    A search is presented for charged Higgs bosons in the H-+/- -> tau(+/-)nu(tau) decay mode in the hadronic final state and in final states with an electron or a muon. The search is based on proton-proton collision data recorded by the CMS experiment in 2016 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). The results agree with the background expectation from the standard model. Upper limits at 95% confidence level are set on the production cross section times branching fraction to tau(+/-)nu(tau) for an H-+/- in the mass range of 80GeV to 3TeV, including the region near the top quark mass. The observed limit ranges from 6 pb at 80 GeV to 5 fb at 3 TeV. The limits are interpreted in the context of the minimal supersymmetric standard model m(h)(mod-) scenario.Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos and b quarks at √s=13 TeV

    Get PDF
    A search for heavy resonances, decaying into the standard model vector bosons and the standard model Higgs boson, is presented. The final states considered contain a b quark-antiquark pair from the decay of the Higgs boson, along with electrons and muons and missing transverse momentum, due to undetected neutrinos, from the decay of the vector bosons. The mass spectra are used to search for a localized excess consistent with a resonant particle. The data sample corresponds to an integrated luminosity of 35.9 fb−1 collected in 2016 by the CMS experiment at the CERN LHC from proton-proton collisions at a center-of-mass energy of 13 TeV. The data are found to be consistent with background expectations. Exclusion limits are set in the context of spin-0 two Higgs doublet models, some of which include the presence of dark matter. In the spin-1 heavy vector triplet framework, mass-degenerate W′ and Z′ resonances with dominant couplings to the standard model gauge bosons are excluded below a mass of 2.9 TeV at 95% confidence level.[Figure not available: see fulltext.]

    Measurement of inclusive very forward jet cross sections in proton-lead collisions at \sqrt{sNN} = 5:02 TeV

    Get PDF
    Measurements of differential cross sections for inclusive very forward jet production in proton-lead collisions as a function of jet energy are presented. The data were collected with the CMS experiment at the LHC in the laboratory pseudorapidity range −6.6 < η < −5.2. Asymmetric beam energies of 4 TeV for protons and 1.58 TeV per nucleon for Pb nuclei were used, corresponding to a center-of-mass energy per nucleon pair of \sqrt{sNN} = 5:02 TeV. Collisions with either the proton (p+Pb) or the ion (Pb+p) traveling towards the negative η hemisphere are studied. The jet cross sections are unfolded to stable-particle level cross sections with p_{T} ≳ 3 GeV, and compared to predictions from various Monte Carlo event generators. In addition, the cross section ratio of p+Pb and Pb+p data is presented. The results are discussed in terms of the saturation of gluon densities at low fractional parton momenta. None of the models under consideration describes all the data over the full jet-energy range and for all beam configurations. Discrepancies between the differential cross sections in data and model predictions of more than two orders of magnitude are observed

    Search for vector-like quarks in events with two oppositely charged leptons and jets in proton-proton collisions at root s=13TeV

    Get PDF
    A search for the pair production of heavy vector-like partners T and B of the top and bottom quarks has been performed by the CMS experiment at the CERN LHC using proton–proton collisions at s√=13TeV. The data sample was collected in 2016 and corresponds to an integrated luminosity of 35.9fb−1. Final states studied for TT¯¯¯¯ production include those where one of the T quarks decays via T→tZ and the other via T→bW, tZ, or tH, where H is a Higgs boson. For the BB¯¯¯¯ case, final states include those where one of the B quarks decays via B→bZ and the other B→tW, bZ, or bH. Events with two oppositely charged electrons or muons, consistent with coming from the decay of a Z boson, and jets are investigated. The number of observed events is consistent with standard model background estimations. Lower limits at 95% confidence level are placed on the masses of the T and B quarks for a range of branching fractions. Assuming 100% branching fractions for T→tZ, and B→bZ, T and B quark mass values below 1280 and 1130GeV, respectively, are excluded

    Measurement of inclusive and differential Higgs boson production cross sections in the diphoton decay channel in proton-proton collisions at √s=13 TeV

    Get PDF
    Measurements of the inclusive and differential production cross sections for the Higgs boson in the diphoton decay channel are performed using the data set of proton-proton collisions at s√=13 TeV collected by the CMS experiment at the LHC in 2016 and corresponding to an integrated luminosity of 35.9 fb−1. The cross sections are measured in a fiducial phase space defined by a set of requirements on the isolation and kinematic variables of the photons. Differential cross sections are measured as functions of the kinematic properties of the diphoton system and the event. A subset of the measurements is performed in regions of the fiducial phase space, where relative contributions of specific Higgs boson production mechanisms are enhanced. The total cross section in the chosen fiducial phase space is measured to be 84 ± 11 (stat) ± 7 (syst) fb = 84 ± 13 fb, to be compared with a theoretical prediction of 73 ± 4 fb. All measurements are found to be in agreement with the theoretical predictions for the standard model Higgs boson with a mass of 125.09 GeV within the experimental and theoretical uncertainties

    Sequential Selective Dissolution of Coinage Metals in Recyclable Ionic Media

    Full text link
    Coinage metals Cu, Ag, and Au are essential for modern electronics and their recycling from waste materials is becoming increasingly important to guarantee the security of their supply. Designing new sustainable and selective procedures that would substitute currently used processes is crucial. Here, we describe an unprecedented approach for the sequential dissolution of single metals from Cu, Ag, and Au mixtures usingbiomass-derived ionic solvents and green oxidants. First, Cu can be selectively dissolved in the presence of Ag and Au with a choline chloride/urea/H2O2 mixture, followed by the dissolution of Ag in lactic acid/H2O2. Finally, the metallic Au, which is not soluble in either solution above, is dissolved in choline chloride/urea/Oxone. Subsequently, the metals were simply and quantitatively recovered from dissolutions, and the solvents were recycled and reused. The applicability of the developed approach was demonstrated by recovering metals from electronic waste substrates such as printed circuit boards, gold fingers, and solar panels. The dissolution reactions and selectivity were explored with different analytical techniques and DFT calculations. We anticipate our approach will pave a new way for the contemporary and sustainable recycling of multimetal waste substratesPeer reviewe
    corecore