17 research outputs found

    Lipopolysaccharide Diversity Evolving in Helicobacter pylori Communities through Genetic Modifications in Fucosyltransferases

    Get PDF
    Helicobacter pylori persistently colonizes the gastric mucosa of half the human population. It is one of the most genetically diverse bacterial organisms and subvariants are continuously emerging within an H. pylori population. In this study we characterized a number of single-colony isolates from H. pylori communities in various environmental settings, namely persistent human gastric infection, in vitro bacterial subcultures on agar medium, and experimental in vivo infection in mice. The lipopolysaccharide (LPS) O-antigen chain revealed considerable phenotypic diversity between individual cells in the studied bacterial communities, as demonstrated by size variable O-antigen chains and different levels of Lewis glycosylation. Absence of high-molecular-weight O-antigen chains was notable in a number of experimentally passaged isolates in vitro and in vivo. This phenotype was not evident in bacteria obtained from a human gastric biopsy, where all cells expressed high-molecular-weight O-antigen chains, which thus may be the preferred phenotype for H. pylori colonizing human gastric mucosa. Genotypic variability was monitored in the two genes encoding α1,3-fucosyltransferases, futA and futB, that are involved in Lewis antigen expression. Genetic modifications that could be attributable to recombination events within and between the two genes were commonly detected and created a diversity, which together with phase variation, contributed to divergent LPS expression. Our data suggest that the surrounding environment imposes a selective pressure on H. pylori to express certain LPS phenotypes. Thus, the milieu in a host will select for bacterial variants with particular characteristics that facilitate adaptation and survival in the gastric mucosa of that individual, and will shape the bacterial community structure

    The structure of the lipid anchor ofcampylobacter jejunipolysaccharide

    No full text
    Campylobacter jejuni is a leading cause of gastroenteritis in humans. Campylobacter jejuni produces extracellular polysaccharides that have been characterized structurally and shown to be independent of lipopolysaccharides. Furthermore, it has been suggested that these C. jejuni polysaccharides are capsular in nature, although their lipid anchor has not been identified. In this report, the occurrence of a lipid-linked capsular-like polysaccharide in C. jejuni is conclusively shown, and the lipid anchor identified as dipalmitoyl-glycerophosphate

    Rapid screening for specific glycosylation and pathogen interactions on a 78 species avian egg white glycoprotein microarray

    Get PDF
    There is an urgent need for discovery of novel antimicrobials and carbohydrate-based anti-adhesive strategies are desirable as they may not promote resistance. Discovery of novel anti-adhesive molecules from natural product libraries will require the use of a high throughput screening platform. Avian egg white (EW) provides nutrition for the embryo and protects against infection, with glycosylation responsible for binding certain pathogens. In this study, a microarray platform of 78 species of avian EWs was developed and profiled for glycosylation using a lectin panel with a wide range of carbohydrate specificities. The dominating linkages of sialic acid in EWs were determined for the first time using the lectins MAA and SNA-I. EW glycosylation similarity among the different orders of birds did not strictly depend on phylogenetic relationship. The interactions of five strains of bacterial pathogens, including Escherichia coli, Staphylococcus aureus and Vibrio cholera, identified a number of EWs as potential anti-adhesives, with some as strain-or species-specific. Of the two bacterial toxins examined, shiga-like toxin 1 subunit B bound to ten EWs with similar glycosylation more intensely than pigeon EW. This study provides a unique platform for high throughput screening of natural products for specific glycosylation and pathogen interactions. This platform may provide a useful platform in the future for discovery of anti-adhesives targeted for strain and species specificity.This work was funded by Science Foundation Ireland (SFI) grant numbers 11/TIDA/I2044 in support of a Technology Innovation Development Award, 08/SRC/B1393 in support of the Alimentary Glycoscience Research Cluster and 07/SK/B1250 for Stokes Professor for Glycosciences (LJ), and the European Union FP7 grant number 260600 in support of the GlycoHIT consortium. The authors thank Prof. James O’Gara and Ms Andrea Flannery for the gift of S. aureus strains and Dr. Aoife Boyd for V. parahaemolyticus. Y.C.L. thanks the late Dr. M. Laskowski, Jr. for generously providing the invaluable egg white collection, which he was gifted over the course of many years by various donors including zoos, research institutes and game preserves. Bird eggs should not be collected from the wild without ethical approval from the relevant national or international governing body.peer-reviewe

    Characterisation and differentiation of lactobacilli by lectin typing

    No full text
    Lactobacillus isolates from healthy Estonian and Swedish children were characterised by a lectin typing technique; 56 isolates from six species (L. acidophilus, L. paracasei, L. plantarum, L. fermentum, L. brevis and L. buchneri) were tested. The typing system was based on an agglutination assay with a panel of six commercially available lectins, which,were chosen on the basis of their carbohydrate specificities. The isolates were also subjected to proteolytic degradation before lectin typing to decrease auto-agglutination of whole cells in the assay. The 56 isolates were divided into 15 different lectin types by their lectin agglutination patterns. Proteolytic treatment reduced auto-agglutination for the majority of species, apart from L. acidophilus, which remained predominantly auto-agglutinating (eight of nine strains). The system produced stable and reproducible results under standardised culture conditions. Lactobacilli are important bacteria for use as probiotics and this system may supplement current molecular typing techniques and may help in identification of strains that could be useful in this role

    Characterisation and differentiation of lactobacilli by lectin typing

    No full text
    Lactobacillus isolates from healthy Estonian and Swedish children were characterised by a lectin typing technique; 56 isolates from six species (L. acidophilus, L. paracasei, L. plantarum, L. fermentum, L. brevis and L. buchneri) were tested. The typing system was based on an agglutination assay with a panel of six commercially available lectins, which,were chosen on the basis of their carbohydrate specificities. The isolates were also subjected to proteolytic degradation before lectin typing to decrease auto-agglutination of whole cells in the assay. The 56 isolates were divided into 15 different lectin types by their lectin agglutination patterns. Proteolytic treatment reduced auto-agglutination for the majority of species, apart from L. acidophilus, which remained predominantly auto-agglutinating (eight of nine strains). The system produced stable and reproducible results under standardised culture conditions. Lactobacilli are important bacteria for use as probiotics and this system may supplement current molecular typing techniques and may help in identification of strains that could be useful in this role

    Rapid screening for specific glycosylation and pathogen interactions on a 78 species avian egg white glycoprotein microarray

    No full text
    There is an urgent need for discovery of novel antimicrobials and carbohydrate-based anti-adhesive strategies are desirable as they may not promote resistance. Discovery of novel anti-adhesive molecules from natural product libraries will require the use of a high throughput screening platform. Avian egg white (EW) provides nutrition for the embryo and protects against infection, with glycosylation responsible for binding certain pathogens. In this study, a microarray platform of 78 species of avian EWs was developed and profiled for glycosylation using a lectin panel with a wide range of carbohydrate specificities. The dominating linkages of sialic acid in EWs were determined for the first time using the lectins MAA and SNA-I. EW glycosylation similarity among the different orders of birds did not strictly depend on phylogenetic relationship. The interactions of five strains of bacterial pathogens, including Escherichia coli, Staphylococcus aureus and Vibrio cholera, identified a number of EWs as potential anti-adhesives, with some as strain-or species-specific. Of the two bacterial toxins examined, shiga-like toxin 1 subunit B bound to ten EWs with similar glycosylation more intensely than pigeon EW. This study provides a unique platform for high throughput screening of natural products for specific glycosylation and pathogen interactions. This platform may provide a useful platform in the future for discovery of anti-adhesives targeted for strain and species specificity.This work was funded by Science Foundation Ireland (SFI) grant numbers 11/TIDA/I2044 in support of a Technology Innovation Development Award, 08/SRC/B1393 in support of the Alimentary Glycoscience Research Cluster and 07/SK/B1250 for Stokes Professor for Glycosciences (LJ), and the European Union FP7 grant number 260600 in support of the GlycoHIT consortium. The authors thank Prof. James O’Gara and Ms Andrea Flannery for the gift of S. aureus strains and Dr. Aoife Boyd for V. parahaemolyticus. Y.C.L. thanks the late Dr. M. Laskowski, Jr. for generously providing the invaluable egg white collection, which he was gifted over the course of many years by various donors including zoos, research institutes and game preserves. Bird eggs should not be collected from the wild without ethical approval from the relevant national or international governing body

    MicroRNAs in Molecular Classification and Pathogenesis of Breast Tumors

    No full text
    The current clinical practice of breast tumor classification relies on the routine immunohistochemistry-based expression analysis of hormone receptors, which is inadequate in addressing breast tumor heterogeneity and drug resistance. MicroRNA expression profiling in tumor tissue and in the circulation is an efficient alternative to intrinsic molecular subtyping that enables precise molecular classification of breast tumor variants, the prediction of tumor progression, risk stratification and also identifies critical regulators of the tumor microenvironment. This review integrates data from protein, gene and miRNA expression studies to elaborate on a unique miRNA-based 10-subtype taxonomy, which we propose as the current gold standard to allow appropriate classification and separation of breast cancer into a targetable strategy for therapy

    Novel myelin penta- and hexa-acetyl-galactosyl-ceramides: structural characterization and immunoreactivity in cerebrospinal fluid

    No full text
    Fast migrating cerebrosides (FMC) are derivatives of galactosylceramide (GalCer). The structures of the most hydrophobic FMC-5, FMC-6, and FMC-7 were determined by electrospray ionization linear ion-trap mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy complementing previous NMR spectroscopy and gas chromatography-mass spectrometry to be 3-O-acetyl-sphingosine-GalCer derivatives with galactose O-acetyl modifications. FMC-5 and FMC-6 are 3-O-acetyl-sphingosine-2,3,4,6-tetra-O-acetyl-GalCer with nonhydroxy and hydroxy-N-fatty-acids, while FMC-7 has an additional O-acetylation of the 2-hydroxy-fatty acid. The immuno-reactivity in human cerebrospinal fluid (CSF) to these acetylated glycolipids was examined in central nervous system (CNS) infectious disease, noninflammatory disorders, and multiple sclerosis (MS). Screening for lipid binding in MS and other neurological disease groups revealed that the greatest anti-hydrophobic FMC reactivity was observed in the inflammatory CNS diseases (meningitis, meningo-encephalitis, and subacute sclerosing panencephalitis). Some MS patients had increased reactivity with the hydrophobic FMCs and with glycoglycerophospholipid MfGL-II from Mycoplasma fermentans. The cross-reactivity of highly acetylated GalCer with microbial acyl-glycolipid raises the possibility that myelin-O-acetyl-cerebrosides, bacterial infection, and neurological disease are linked.-Podbielska, M., S. Dasgupta, S. B. Levery, W. W. Tourtellotte, H. Annuk, A. P. Moran, and E. L. Hogan. Novel myelin penta- and hexa-acetyl-galactosyl-ceramides: structural characterization and immunoreactivity in cerebrospinal fluid. J. Lipid Res. 2010. 51: 1394-1406
    corecore