30 research outputs found

    Effect of oxygen and biofilms on crevice corrosion of UNS S31803 and UNS N08825 in natural seawater

    No full text
    The effect of oxygen and biofilms on crevice corrosion of UNS S31803 and UNS N08825 in seawater was studied. Passivity breakdown occurred through crevice corrosion in UNS N08825 and through transpassive dissolution in UNS S31803 although both alloys displayed crevice corrosion under potentiodynamic conditions. The most severe crevice corrosion occurred in the absence of oxygen and the presence of a biofilm. Microbial adhesion as investigated by fluorescence microscopy occurred mainly outside the crevice and DNA sequencing revealed a shift in biofilm composition as a function of substratum surface and oxygen pressure

    Publisher Correction: Global site-specific neddylation profiling reveals that NEDDylated cofilin regulates actin dynamics (Nature Structural & Molecular Biology, (2020), 27, 2, (210-220), 10.1038/s41594-019-0370-3).

    No full text
    In the version of this article initially published online, in Fig. 6d, the third and fourth bars were incorrectly labeled “DMSO + cytochrome D” and “MLN4924 + cytochrome D,” respectively. They should have been labeled “DMSO + cytochalasin D” and “MLN4924 + cytochalasin D,” respectively. The errors have been corrected in the print, PDF and HTML versions of the article

    Global site-specific neddylation profiling reveals that NEDDylated cofilin regulates actin dynamics

    No full text
    Neddylation is the post-translational protein modification most closely related to ubiquitination. Whereas the ubiquitin-like protein NEDD8 is well studied for its role in activating cullin−RING E3 ubiquitin ligases, little is known about other substrates. We developed serial NEDD8-ubiquitin substrate profiling (sNUSP), a method that employs NEDD8 R74K knock-in HEK293 cells, allowing discrimination of endogenous NEDD8- and ubiquitin-modification sites by MS after Lys-C digestion and K-ΔGG-peptide enrichment. Using sNUSP, we identified 607 neddylation sites dynamically regulated by the neddylation inhibitor MLN4924 and the de-neddylating enzyme NEDP1, implying that many non-cullin proteins are neddylated. Among the candidates, we characterized lysine 112 of the actin regulator cofilin as a novel neddylation event. Global inhibition of neddylation in developing neurons leads to cytoskeletal defects, altered actin dynamics and neurite growth impairments, whereas site-specific neddylation of cofilin at K112 regulates neurite outgrowth, suggesting that cofilin neddylation contributes to the regulation of neuronal actin organization

    Global site-specific neddylation profiling reveals that NEDDylated cofilin regulates actin dynamics.

    No full text
    Neddylation is the post-translational protein modification most closely related to ubiquitination. Whereas the ubiquitin-like protein NEDD8 is well studied for its role in activating cullin−RING E3 ubiquitin ligases, little is known about other substrates. We developed serial NEDD8-ubiquitin substrate profiling (sNUSP), a method that employs NEDD8 R74K knock-in HEK293 cells, allowing discrimination of endogenous NEDD8- and ubiquitin-modification sites by MS after Lys-C digestion and K-ΔGG-peptide enrichment. Using sNUSP, we identified 607 neddylation sites dynamically regulated by the neddylation inhibitor MLN4924 and the de-neddylating enzyme NEDP1, implying that many non-cullin proteins are neddylated. Among the candidates, we characterized lysine 112 of the actin regulator cofilin as a novel neddylation event. Global inhibition of neddylation in developing neurons leads to cytoskeletal defects, altered actin dynamics and neurite growth impairments, whereas site-specific neddylation of cofilin at K112 regulates neurite outgrowth, suggesting that cofilin neddylation contributes to the regulation of neuronal actin organization
    corecore