2,162 research outputs found
Harvest of the Month
Harvest of the Month curriculum exists in many states, but Indiana lacks a statewide effort in this area. To meet this need, collection of lessons with complementary activities that are specific to Indiana agriculture were created. The driving force behind the curriculum was to create a lesson that is fun and engaging for students, but also well-rounded and standards-based for teachers. Components of the lesson include Life Cycle Discussions, Taste Testing, Interactive Activities, and Journal Prompts. Partnering with Indiana farmers, a harvest video was created to accompany each lesson that features a different agricultural product grown in Indiana each month. A Google Classroom was also created for each month, allowing teachers to assign lessons on E-Learning days
Fluid dynamics of bacterial turbulence
Self-sustained turbulent structures have been observed in a wide range of
living fluids, yet no quantitative theory exists to explain their properties.
We report experiments on active turbulence in highly concentrated 3D
suspensions of Bacillus subtilis and compare them with a minimal fourth-order
vector-field theory for incompressible bacterial dynamics. Velocimetry of
bacteria and surrounding fluid, determined by imaging cells and tracking
colloidal tracers, yields consistent results for velocity statistics and
correlations over two orders of magnitude in kinetic energy, revealing a
decrease of fluid memory with increasing swimming activity and linear scaling
between energy and enstrophy. The best-fit model parameters allow for
quantitative agreement with experimental data.Comment: 5 pages, 4 figure
Development of an integrated heat pipe-thermal storage system for a solar receiver
The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube
Meso-scale turbulence in living fluids
Turbulence is ubiquitous, from oceanic currents to small-scale biological and
quantum systems. Self-sustained turbulent motion in microbial suspensions
presents an intriguing example of collective dynamical behavior amongst the
simplest forms of life, and is important for fluid mixing and molecular
transport on the microscale. The mathematical characterization of turbulence
phenomena in active non-equilibrium fluids proves even more difficult than for
conventional liquids or gases. It is not known which features of turbulent
phases in living matter are universal or system-specific, or which
generalizations of the Navier-Stokes equations are able to describe them
adequately. Here, we combine experiments, particle simulations, and continuum
theory to identify the statistical properties of self-sustained meso-scale
turbulence in active systems. To study how dimensionality and boundary
conditions affect collective bacterial dynamics, we measured energy spectra and
structure functions in dense Bacillus subtilis suspensions in quasi-2D and 3D
geometries. Our experimental results for the bacterial flow statistics agree
well with predictions from a minimal model for self-propelled rods, suggesting
that at high concentrations the collective motion of the bacteria is dominated
by short-range interactions. To provide a basis for future theoretical studies,
we propose a minimal continuum model for incompressible bacterial flow. A
detailed numerical analysis of the 2D case shows that this theory can reproduce
many of the experimentally observed features of self-sustained active
turbulence.Comment: accepted PNAS version, 6 pages, click doi for Supplementary
Informatio
Measurement of the electron electric dipole moment using GdIG
A new method for the detection of the electron edm using a solid is
described. The method involves the measurement of a voltage induced across the
solid by the alignment of the samples magnetic dipoles in an applied magnetic
field, H. A first application of the method to GdIG has resulted in a limit on
the electron edm of 5E-24 e-cm, which is a factor of 40 below the limit
obtained from the only previous solid-state edm experiment. The result is
limited by the imperfect discrimination of an unexpectedly large voltage that
is even upon the reversal of the sample magnetization.Comment: 10 pages, 5 figures, v2:references corrected, submitted to PRL,
v3:added labels to figure
Structure and Strength of Dislocation Junctions: An Atomic Level Analysis
The quasicontinuum method is used to simulate three-dimensional
Lomer-Cottrell junctions both in the absence and in the presence of an applied
stress. The simulations show that this type of junction is destroyed by an
unzipping mechanism in which the dislocations that form the junction are
gradually pulled apart along the junction segment. The calculated critical
stress needed for breaking the junction is comparable to that predicted by line
tension models. The simulations also demonstrate a strong influence of the
initial dislocation line directions on the breaking mechanism, an effect that
is neglected in the macroscopic treatment of the hardening effect of junctions.Comment: 4 pages, 3 figure
Equivalent bosonic theory for the massive Thirring model with non-local interaction
We study, through path-integral methods, an extension of the massive Thirring
model in which the interaction between currents is non-local. By examining the
mass-expansion of the partition function we show that this non-local massive
Thirring model is equivalent to a certain non-local extension of the
sine-Gordon theory. Thus, we establish a non-local generalization of the famous
Coleman's equivalence. We also discuss some possible applications of this
result in the context of one-dimensional strongly correlated systems and
finite-size Quantum Field Theories.Comment: 15 pages, latex, no figure
d=3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories
We study three dimensional O(N)_k and U(N)_k Chern-Simons theories coupled to
a scalar field in the fundamental representation, in the large N limit. For
infinite k this is just the singlet sector of the O(N) (U(N)) vector model,
which is conjectured to be dual to Vasiliev's higher spin gravity theory on
AdS_4. For large k and N we obtain a parity-breaking deformation of this
theory, controlled by the 't Hooft coupling lambda = 4 \pi N / k. For infinite
N we argue (and show explicitly at two-loop order) that the theories with
finite lambda are conformally invariant, and also have an exactly marginal
(\phi^2)^3 deformation.
For large but finite N and small 't Hooft coupling lambda, we show that there
is still a line of fixed points parameterized by the 't Hooft coupling lambda.
We show that, at infinite N, the interacting non-parity-invariant theory with
finite lambda has the same spectrum of primary operators as the free theory,
consisting of an infinite tower of conserved higher-spin currents and a scalar
operator with scaling dimension \Delta=1; however, the correlation functions of
these operators do depend on lambda. Our results suggest that there should
exist a family of higher spin gravity theories, parameterized by lambda, and
continuously connected to Vasiliev's theory. For finite N the higher spin
currents are not conserved.Comment: 34 pages, 29 figures. v2: added reference
- …