1,692 research outputs found
Lattice dynamics and electron-phonon interaction in (3,3) carbon nanotubes
We present a detailed study of the lattice dynamics and electron-phonon
coupling for a (3,3) carbon nanotube which belongs to the class of small
diameter based nanotubes which have recently been claimed to be
superconducting. We treat the electronic and phononic degrees of freedom
completely by modern ab-initio methods without involving approximations beyond
the local density approximation. Using density functional perturbation theory
we find a mean-field Peierls transition temperature of approx 40K which is an
order of magnitude larger than the calculated superconducting transition
temperature. Thus in (3,3) tubes the Peierls transition might compete with
superconductivity. The Peierls instability is related to the special 2k_F
nesting feature of the Fermi surface. Due to the special topology of the (n,n)
tubes also a q=0 coupling between the two bands crossing the Fermi energy at
k_F is possible which leads to a phonon softening at the Gamma point.Comment: 4 pages, 3 figures; to be published in Phys. Rev. Let
Staggered Pairing Phenomenology for UPd_2Al_3 and UNi_2Al_3
We apply the staggered-pairing Ginzburg-Landau phenomenology to describe
superconductivity in UPd_2Al_3 and UNi_2Al_3. The phenomenology was applied
successfully to UPt_3 so it explains why these materials have qualitatively
different superconducting phase diagrams although they have the same
point-group symmetry. UPd_2Al_3 and UNi_2Al_3 have a two-component
superconducting order parameter transforming as an H-point irreducible
representation of the space group. Staggered superconductivity can induce
charge-density waves characterized by new Bragg peaks suggesting experimental
tests of the phenomenology.Comment: 4 pages, REVTeX, 2 Postscript figure
Lattice dynamics and electron-phonon coupling in transition metal diborides
The phonon density-of-states of transition metal diborides TMB2 with TM = Ti,
V, Ta, Nb and Y has been measured using the technique of inelastic neutron
scattering. The experimental data are compared with ab initio density
functional calculations whereby an excellent agreement is registered. The
calculations thus can be used to obtain electron-phonon spectral functions
within the isotropic limit. A comparison to similar data for MgB2 and AlB2
which were subject of prior publications as well as parameters important for
the superconducting properties are part of the discussion.Comment: 4 pages, 3 figure
Properties of the phonon-induced pairing interaction in YBaCuO within the local density approximation
The properties of the phonon-induced interaction between electrons are
studied using the local density approximation (LDA). Restricting the electron
momenta to the Fermi surface we find generally that this interaction has a
pronounced peak for large momentum transfers and that the interband
contributions between bonding and antibonding band are of the same magnitude as
the intraband ones. Results are given for various symmetry averages of this
interaction over the Fermi surface. In particular, we find that the
dimensionless coupling constant in the d-wave channel , relevant for
superconductivity, is only 0.022, i.e., even about ten times smaller than the
small value of the s-wave channel. Similarly, the LDA contribution to the
resistivity is about a factor 10 times smaller than the observed resistivity
suggesting that phonons are not the important low-energy excitations in
high-T oxides.Comment: 6 pages, 7 figure
Incommensurate phonon anomaly and the nature of charge density waves in cuprates
While charge density wave (CDW) instabilities are ubiquitous to
superconducting cuprates, the different ordering wavevectors in various cuprate
families have hampered a unified description of the CDW formation mechanism.
Here we investigate the temperature dependence of the low energy phonons in the
canonical CDW ordered cuprate LaBaCuO. We discover
that the phonon softening wavevector associated with CDW correlations becomes
temperature dependent in the high-temperature precursor phase and changes from
a wavevector of 0.238 reciprocal space units (r.l.u.) below the ordering
transition temperature up to 0.3~r.l.u. at 300~K. This high-temperature
behavior shows that "214"-type cuprates can host CDW correlations at a similar
wavevector to previously reported CDW correlations in non-"214"-type cuprates
such as YBaCuO. This indicates that cuprate CDWs may
arise from the same underlying instability despite their apparently different
low temperature ordering wavevectors.Comment: Accepted in Phys. Rev. X; 9 pages; 5 figures; 3 pages of
supplementary materia
First-principles calculations of the dispersion of surface phonons of the unreconstructed and reconstructed Pt(110)
We present result of calculations of the surface phonon dispersion curves for
Pt(110) using density functional theory in the local density approximation and
norm conserving pseudopotentials in a mixed-basis approach. Linear response
theory is invoked and both the unreconstructed, and the missing row (1x2)
reconstructed surfaces are considered. We find that the reconstruction is not
driven by a phonon instability. Most of the observed phonon modes for the (1x2)
structure can be understood in terms of simple folding of the (1x1) Brillouin
zone onto that for the (1x2) surface. Largest changes in the phonon frequencies
on surface reconstruction occur close to the zone boundary in the (001)
direction. Detailed comparison of atomic force constants for the (1x1) and the
(1x2) surfaces and their bulk counterparts show that the bulk value is attained
after three layers. Our calculations reproduce nicely the Kohn anomaly observed
along the (110) direction in the bulk. We do not find a corresponding effect on
the surface
Phonon spectrum and soft-mode behavior of MgCNi_3
Temperature dependent inelastic neutron-scattering measurements of the
generalized phonon density-of-states for superconducting MgCNi_3, T_c=8 K, give
evidence for a soft-mode behavior of low-frequency Ni phonon modes. Results are
compared with ab initio density functional calculations which suggest an
incipient lattice instability of the stoichiometric compound with respect to Ni
vibrations orthogonal to the Ni-C bond direction.Comment: 4 pages, 5 figure
Photoemission kinks and phonons in cuprates
One of the possible mechanisms of high Tc superconductivity is Cooper pairing
with the help of bosons, which change the slope of the electronic dispersion as
observed by photoemission. Giustino et al. calculated that in the high
temperature superconductor La1.85Sr0.15CuO4 crystal lattice vibrations
(phonons) should have a negligible effect on photoemission spectra and
concluded that phonons do not play an important role. We show that the
calculations employed by Giustino et al. fail to reproduce huge influence of
electron-phonon coupling on important phonons observed in experiments. Thus one
would expect these calculations to similarly fail in explaining the role of
electron-phonon coupling for the electronic dispersion.Comment: To appear in Nature as a Brief Communiction Arisin
- …