1,692 research outputs found

    Lattice dynamics and electron-phonon interaction in (3,3) carbon nanotubes

    Full text link
    We present a detailed study of the lattice dynamics and electron-phonon coupling for a (3,3) carbon nanotube which belongs to the class of small diameter based nanotubes which have recently been claimed to be superconducting. We treat the electronic and phononic degrees of freedom completely by modern ab-initio methods without involving approximations beyond the local density approximation. Using density functional perturbation theory we find a mean-field Peierls transition temperature of approx 40K which is an order of magnitude larger than the calculated superconducting transition temperature. Thus in (3,3) tubes the Peierls transition might compete with superconductivity. The Peierls instability is related to the special 2k_F nesting feature of the Fermi surface. Due to the special topology of the (n,n) tubes also a q=0 coupling between the two bands crossing the Fermi energy at k_F is possible which leads to a phonon softening at the Gamma point.Comment: 4 pages, 3 figures; to be published in Phys. Rev. Let

    Staggered Pairing Phenomenology for UPd_2Al_3 and UNi_2Al_3

    Full text link
    We apply the staggered-pairing Ginzburg-Landau phenomenology to describe superconductivity in UPd_2Al_3 and UNi_2Al_3. The phenomenology was applied successfully to UPt_3 so it explains why these materials have qualitatively different superconducting phase diagrams although they have the same point-group symmetry. UPd_2Al_3 and UNi_2Al_3 have a two-component superconducting order parameter transforming as an H-point irreducible representation of the space group. Staggered superconductivity can induce charge-density waves characterized by new Bragg peaks suggesting experimental tests of the phenomenology.Comment: 4 pages, REVTeX, 2 Postscript figure

    Lattice dynamics and electron-phonon coupling in transition metal diborides

    Full text link
    The phonon density-of-states of transition metal diborides TMB2 with TM = Ti, V, Ta, Nb and Y has been measured using the technique of inelastic neutron scattering. The experimental data are compared with ab initio density functional calculations whereby an excellent agreement is registered. The calculations thus can be used to obtain electron-phonon spectral functions within the isotropic limit. A comparison to similar data for MgB2 and AlB2 which were subject of prior publications as well as parameters important for the superconducting properties are part of the discussion.Comment: 4 pages, 3 figure

    Properties of the phonon-induced pairing interaction in YBa2_2Cu3_3O7_7 within the local density approximation

    Full text link
    The properties of the phonon-induced interaction between electrons are studied using the local density approximation (LDA). Restricting the electron momenta to the Fermi surface we find generally that this interaction has a pronounced peak for large momentum transfers and that the interband contributions between bonding and antibonding band are of the same magnitude as the intraband ones. Results are given for various symmetry averages of this interaction over the Fermi surface. In particular, we find that the dimensionless coupling constant in the d-wave channel λd\lambda^d, relevant for superconductivity, is only 0.022, i.e., even about ten times smaller than the small value of the s-wave channel. Similarly, the LDA contribution to the resistivity is about a factor 10 times smaller than the observed resistivity suggesting that phonons are not the important low-energy excitations in high-Tc_c oxides.Comment: 6 pages, 7 figure

    Incommensurate phonon anomaly and the nature of charge density waves in cuprates

    Get PDF
    While charge density wave (CDW) instabilities are ubiquitous to superconducting cuprates, the different ordering wavevectors in various cuprate families have hampered a unified description of the CDW formation mechanism. Here we investigate the temperature dependence of the low energy phonons in the canonical CDW ordered cuprate La1.875_{1.875}Ba0.125_{0.125}CuO4_{4}. We discover that the phonon softening wavevector associated with CDW correlations becomes temperature dependent in the high-temperature precursor phase and changes from a wavevector of 0.238 reciprocal space units (r.l.u.) below the ordering transition temperature up to 0.3~r.l.u. at 300~K. This high-temperature behavior shows that "214"-type cuprates can host CDW correlations at a similar wavevector to previously reported CDW correlations in non-"214"-type cuprates such as YBa2_{2}Cu3_{3}O6+δ_{6+\delta}. This indicates that cuprate CDWs may arise from the same underlying instability despite their apparently different low temperature ordering wavevectors.Comment: Accepted in Phys. Rev. X; 9 pages; 5 figures; 3 pages of supplementary materia

    First-principles calculations of the dispersion of surface phonons of the unreconstructed and reconstructed Pt(110)

    Full text link
    We present result of calculations of the surface phonon dispersion curves for Pt(110) using density functional theory in the local density approximation and norm conserving pseudopotentials in a mixed-basis approach. Linear response theory is invoked and both the unreconstructed, and the missing row (1x2) reconstructed surfaces are considered. We find that the reconstruction is not driven by a phonon instability. Most of the observed phonon modes for the (1x2) structure can be understood in terms of simple folding of the (1x1) Brillouin zone onto that for the (1x2) surface. Largest changes in the phonon frequencies on surface reconstruction occur close to the zone boundary in the (001) direction. Detailed comparison of atomic force constants for the (1x1) and the (1x2) surfaces and their bulk counterparts show that the bulk value is attained after three layers. Our calculations reproduce nicely the Kohn anomaly observed along the (110) direction in the bulk. We do not find a corresponding effect on the surface

    Phonon spectrum and soft-mode behavior of MgCNi_3

    Full text link
    Temperature dependent inelastic neutron-scattering measurements of the generalized phonon density-of-states for superconducting MgCNi_3, T_c=8 K, give evidence for a soft-mode behavior of low-frequency Ni phonon modes. Results are compared with ab initio density functional calculations which suggest an incipient lattice instability of the stoichiometric compound with respect to Ni vibrations orthogonal to the Ni-C bond direction.Comment: 4 pages, 5 figure

    Photoemission kinks and phonons in cuprates

    Full text link
    One of the possible mechanisms of high Tc superconductivity is Cooper pairing with the help of bosons, which change the slope of the electronic dispersion as observed by photoemission. Giustino et al. calculated that in the high temperature superconductor La1.85Sr0.15CuO4 crystal lattice vibrations (phonons) should have a negligible effect on photoemission spectra and concluded that phonons do not play an important role. We show that the calculations employed by Giustino et al. fail to reproduce huge influence of electron-phonon coupling on important phonons observed in experiments. Thus one would expect these calculations to similarly fail in explaining the role of electron-phonon coupling for the electronic dispersion.Comment: To appear in Nature as a Brief Communiction Arisin
    • …
    corecore