1,222 research outputs found

    Phonon dispersion and electron-phonon coupling in MgB_2 and AlB_2

    Full text link
    We present a first principles investigation of the lattice dynamics and electron-phonon coupling of the superconductor MgB_2 and the isostructural AlB_2 within the framework of density functional perturbation theory using a mixed-basis pseudopotential method. Complete phonon dispersion curves and Eliashberg functions \alpha^2F are calculated for both systems. We also report on Raman measurements, which support the theoretical findings. The calculated generalized density-of-states for MgB_2 is in excellent agreement with recent neutron-scattering experiments. The main differences in the calculated phonon spectra and \alpha^2F are related to high frequency in-plane boron vibrations. As compared to AlB_2, they are strongly softened in MgB_2 and exhibit an exceptionally strong coupling to electronic states at the Fermi energy. The total coupling constants are \lambda_{MgB_2}=0.73 and \lambda_{AlB_2}=0.43. Implications for the superconducting transition temperature are briefly discussed.Comment: 10 pages, 4 figures, to appear in Phys. Rev. Let

    Witnessing effective entanglement in a continuous variable prepare&measure setup and application to a QKD scheme using postselection

    Full text link
    We report an experimental demonstration of effective entanglement in a prepare&measure type of quantum key distribution protocol. Coherent polarization states and heterodyne measurement to characterize the transmitted quantum states are used, thus enabling us to reconstruct directly their Q-function. By evaluating the excess noise of the states, we experimentally demonstrate that they fulfill a non-separability criterion previously presented by Rigas et al. [J. Rigas, O. G\"uhne, N. L\"utkenhaus, Phys. Rev. A 73, 012341 (2006)]. For a restricted eavesdropping scenario we predict key rates using postselection of the heterodyne measurement results.Comment: 12 pages, 12 figures, 2 table

    Properties of the phonon-induced pairing interaction in YBa2_2Cu3_3O7_7 within the local density approximation

    Full text link
    The properties of the phonon-induced interaction between electrons are studied using the local density approximation (LDA). Restricting the electron momenta to the Fermi surface we find generally that this interaction has a pronounced peak for large momentum transfers and that the interband contributions between bonding and antibonding band are of the same magnitude as the intraband ones. Results are given for various symmetry averages of this interaction over the Fermi surface. In particular, we find that the dimensionless coupling constant in the d-wave channel λd\lambda^d, relevant for superconductivity, is only 0.022, i.e., even about ten times smaller than the small value of the s-wave channel. Similarly, the LDA contribution to the resistivity is about a factor 10 times smaller than the observed resistivity suggesting that phonons are not the important low-energy excitations in high-Tc_c oxides.Comment: 6 pages, 7 figure

    Linear Response Calculations of Lattice Dynamics in Strongly Correlated Systems

    Full text link
    We introduce a new linear response method to study the lattice dynamics of materials with strong correlations. It is based on a combination of dynamical mean field theory of strongly correlated electrons and the local density functional theory of electronic structure of solids. We apply the method to study the phonon dispersions of a prototype Mott insulator NiO. Our results show overall much better agreement with experiment than the corresponding local density predictions.Comment: 4 pages, 2 figure

    Staggered Pairing Phenomenology for UPd_2Al_3 and UNi_2Al_3

    Full text link
    We apply the staggered-pairing Ginzburg-Landau phenomenology to describe superconductivity in UPd_2Al_3 and UNi_2Al_3. The phenomenology was applied successfully to UPt_3 so it explains why these materials have qualitatively different superconducting phase diagrams although they have the same point-group symmetry. UPd_2Al_3 and UNi_2Al_3 have a two-component superconducting order parameter transforming as an H-point irreducible representation of the space group. Staggered superconductivity can induce charge-density waves characterized by new Bragg peaks suggesting experimental tests of the phenomenology.Comment: 4 pages, REVTeX, 2 Postscript figure

    Phonon spectrum and soft-mode behavior of MgCNi_3

    Full text link
    Temperature dependent inelastic neutron-scattering measurements of the generalized phonon density-of-states for superconducting MgCNi_3, T_c=8 K, give evidence for a soft-mode behavior of low-frequency Ni phonon modes. Results are compared with ab initio density functional calculations which suggest an incipient lattice instability of the stoichiometric compound with respect to Ni vibrations orthogonal to the Ni-C bond direction.Comment: 4 pages, 5 figure

    Superconductivity and hybrid soft modes in TiSe2_2

    Get PDF
    The competition between superconductivity and other ground states of solids is one of the challenging topics in condensed matter physics. Apart from high-temperature superconductors [1,2] this interplay also plays a central role in the layered transition-metal dichalcogenides, where superconductivity is stabilized by suppressing charge-density-wave order to zero temperature by intercalation [3] or applied pressure [4-7]. 1T-TiSe2_2 forms a prime example, featuring superconducting domes on intercalation as well as under applied pressure. Here, we present high energy-resolution inelastic x-ray scattering measurements of the CDW soft phonon mode in intercalated Cux_xTiSe2_2 and pressurized 1T-TiSe2_2 along with detailed ab-initio calculations for the lattice dynamical properties and phonon-mediated superconductivity. We find that the intercalation-induced superconductivity can be explained by a solely phonon-mediated pairing mechanism, while this is not possible for the superconducting phase under pressure. We argue that a hybridization of phonon and exciton modes in the pairing mechanism is necessary to explain the full observed temperature-pressure-intercalation phase diagram. These results indicate that 1T-TiSe2_2 under pressure is close to the elusive state of the excitonic insulator

    Electron-phonon coupling in the conventional superconductor YNi2_2B2_2C at high phonon energies studied by time-of-flight neutron spectroscopy

    Full text link
    We report an inelastic neutron scattering investigation of phonons with energies up to 159 meV in the conventional superconductor YNi2_2B2_2C. Using the SWEEP mode, a newly developed time-of-flight technique involving the continuous rotation of a single crystal specimen, allowed us to measure a four dimensional volume in (Q,E) space and, thus, determine the dispersion surface and linewidths of the A1gA_{1g} (~ 102 meV) and AuA_u (~ 159 meV) type phonon modes for the whole Brillouin zone. Despite of having linewidths of Γ=10meV\Gamma = 10 meV, A1gA_{1g} modes do not strongly contribute to the total electron-phonon coupling constant λ\lambda. However, experimental linewidths show a remarkable agreement with ab-initio calculations over the complete phonon energy range demonstrating the accuracy of such calculations in a rare comparison to a comprehensive experimental data set.Comment: accepted for publication in PR

    Theory of "ferrisuperconductivity" in U1−xThxBe13U_{1-x}Th_xBe_{13}

    Full text link
    We construct a two component Ginzburg-Landau theory with coherent pair motion and incoherent quasiparticles for the phase diagram of U1−xThxBe13U_{1-x}Th_xBe_{13}. The two staggered superconducting states live at the Brillouin zone center and the zone boundary, and coexist for temperatures T≤Tc2T\le T_{c2} at concentrations xc1≈0.02≤x≤xc2≈0.04x_{c1}\approx 0.02\le x \le x_{c2}\approx 0.04. We predict below Tc2T_{c2} appearance of a charge density wave (CDW) and Be-sublattice distortion. The distortion explains the μ\muSR relaxation anomaly, and Th-impurity mediated scattering of ultrasound to CDW fluctuations explains the attenuation peak.Comment: 4 pages, 4 eps figures, REVTe
    • …
    corecore