5 research outputs found

    On reference frames in spacetime and gravitational energy in freely falling frames

    Full text link
    We consider the interpretation of tetrad fields as reference frames in spacetime. Reference frames may be characterized by an antisymmetric acceleration tensor, whose components are identified as the inertial accelerations of the frame (the translational acceleration and the frequency of rotation of the frame). This tensor is closely related to gravitoelectromagnetic field quantities. We construct the set of tetrad fields adapted to observers that are in free fall in the Schwarzschild spacetime, and show that the gravitational energy-momentum constructed out of this set of tetrad fields, in the framework of the teleparallel equivalent of general relatrivity, vanishes. This result is in agreement with the principle of equivalence, and may be taken as a condition for a viable definition of gravitational energy.Comment: 19 pages, no figures, accepted by Classical and Quantum Gravit

    Conservation laws for vacuum tetrad gravity

    Full text link
    Ten conservation laws in useful polynomial form are derived from a Cartan form and Exterior Differential System (EDS) for the tetrad equations of vacuum relativity. The Noether construction of conservation laws for well posed EDS is introduced first, and an illustration given, deriving 15 conservation laws of the free field Maxwell Equations from symmetries of its EDS. The Maxwell EDS and tetrad gravity EDS have parallel structures, with their numbers of dependent variables, numbers of generating 2-forms and generating 3-forms, and Cartan character tables all in the ratio of 1 to 4. They have 10 corresponding symmetries with the same Lorentz algebra, and 10 corresponding conservation laws.Comment: Final version with additional reference

    The gravitational energy-momentum flux

    Full text link
    We present a continuity equation for the gravitational energy-momentum, which is obtained in the framework of the teleparallel equivalent of general relativity. From this equation it follows a general definition for the gravitational energy-momentum flux. This definition is investigated in the context of plane waves and of cylindrical Einstein-Rosen waves. We obtain the well known value for the energy flux of plane gravitational waves, and conclude that the latter exhibit features similar to plane electromagnetic waves.Comment: 20 pages, latex file, no figures, two references added, accepted for publication in Class. Quantum Gravit

    Covariant description of the black hole entropy in 3D gravity

    Get PDF
    We study the entropy of the black hole with torsion using the covariant form of the partition function. The regularization of infinities appearing in the semiclassical calculation is shown to be consistent with the grand canonical boundary conditions. The correct value for the black hole entropy is obtained provided the black hole manifold has two boundaries, one at infinity and one at the horizon. However, one can construct special coordinate systems, in which the entropy is effectively associated with only one of these boundaries.Comment: 12 pages, LaTeX, v2: new material in section IV clarifies the effects pertaining to the use of different coordinate system
    corecore