147 research outputs found

    Effect of the 3'APOB-VNTR polymorphism on the lipid profiles in the Guangxi Hei Yi Zhuang and Han populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Apolipoprotein (Apo) B is the major component of low-density lipoprotein (LDL), very low-density lipoprotein (VLDL) and chylomicrons. Many genetic polymorphisms of the Apo B have been described, associated with variation of lipid levels. However, very few studies have evaluated the effect of the variable number of tandem repeats region 3' of the Apo B gene (3'APOB-VNTR) polymorphism on the lipid profiles in the special minority subgroups in China. Thus, the present study was undertaken to study the effect of the 3'APOB-VNTR polymorphism on the serum lipid levels in the Guangxi Hei Yi Zhuang and Han populations.</p> <p>Methods</p> <p>A total of 548 people of Hei Yi Zhuang were surveyed by a stratified randomized cluster sampling. The epidemiological survey was performed using internationally standardized methods. Serum lipid and apolipoprotein levels were measured. The 3'APOB-VNTR alleles were determined by polymerase chain reaction (PCR) followed by electrophoresis in polyacrylamide gels, and classified according to the number of repeats of a 15-bp hypervariable elements (HVE). The sequence of the most common allele was determined using the PCR and direct sequencing. The possible association between alleles of the 3'APOB-VNTR and lipid variables was examined. The results were compared with those in 496 people of Han who also live in that district.</p> <p>Results</p> <p>Nineteen alleles ranging from 24 to 64 repeats were detected in both Hei Yi Zhuang and Han. HVE56 and HVE58 were not be detected in Hei Yi Zhuang whereas HVE48 and HVE62 were totally absent in Han. The frequencies of HVE26, HVE30, HVE46, heterozygote, and short alleles (< 38 repeats) were higher in Hei Yi Zhuang than in Han. But the frequencies of HVE34, HVE38, HVE40, homozygote, and long alleles (≥ 38 repeats) were lower in Hei Yi Zhuang than in Han (<it>P </it>< 0.05–0.01). The levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and Apo B in Hei Yi Zhuang but not in Han were higher in VNTR-LS (carrier of one long and one short alleles) than in VNTR-LL (the individual carrying two long alleles) genotypes. The levels of TC, triglycerides (TG), LDL cholesterol, and Apo B in Hei Yi Zhuang were higher in both HVE34 and HVE36 alleles than in HVE32 allele. The levels of TC, TG, HDL-C and Apo B in Hei Yi Zhuang were also higher in homozygotes than in heterozygotes. There were no significant differences in the detected lipid parameters between the VNTR-SS (carrier of two short alleles) and VNTR-LS or VNTR-LL genotypes in both ethnic groups.</p> <p>Conclusion</p> <p>There were significant differences of the 3'APOB-VNTR polymorphism between the Hei Yi Zhuang and Han populations. An association between the 3'APOB-VNTR polymorphism and serum lipid levels was observed in the Hei Yi Zhuang but not in the Han populations.</p

    Food Use and Health Effects of Soybean and Sunflower Oils

    Get PDF
    This review provides a scientific assessment of current knowledge of health effects of soybean oil (SBO) and sunflower oil (SFO). SBO and SFO both contain high levels of polyunsaturated fatty acids (PUFA) (60.8 and 69%, respectively), with a PUFA:saturated fat ratio of 4.0 for SBO and 6.4 for SFO. SFO contains 69% C18:2n-6 and less than 0.1% C18:3n-3, while SBO contains 54% C18:2n-6 and 7.2% C18:3n-3. Thus, SFO and SBO each provide adequate amounts of C18:2n-6, but of the two, SBO provides C18:3n-3 with a C18:2n-6:C18:3n-3 ratio of 7.1. Epidemiological evidence has suggested an inverse relationship between the consumption of diets high in vegetable fat and blood pressure, although clinical findings have been inconclusive. Recent dietary guidelines suggest the desirability of decreasing consumption of total and saturated fat and cholesterol, an objective that can be achieved by substituting such oils as SFO and SBO for animal fats. Such changes have consistently resulted in decreased total and low-density-lipoprotein cholesterol, which is thought to be favorable with respect to decreasing risk of cardiovascular disease. Also, decreases in high-density-lipoprotein cholesterol have raised some concern. Use of vegetable oils such as SFO and SBO increases C18:2n-6, decreases C20:4n-6, and slightly elevated C20:5n-3 and C22:6n-3 in platelets, changes that slightly inhibit platelet generation of thromboxane and ex vivo aggregation. Whether chronic use of these oils will effectively block thrombosis at sites of vascular injury, inhibit pathologic platelet vascular interactions associated with atherosclerosis, or reduce the incidence of acute vascular occlusion in the coronary or cerebral circulation is uncertain. Linoleic acid is needed for normal immune response, and essential fatty acid (EFA) deficiency impairs B and T cell-mediated responses. SBO and SFO can provide adequate linoleic acid for maintenance of the immune response. Excess linoleic acid has supported tumor growth in animals, an effect not verified by data from diverse human studies of risk, incidence, or progression of cancers of the breast and colon. Areas yet to be investigated include the differential effects of n-6- and n-3-containing oil on tumor development in humans and whether shorter-chain n-3 PUFA of plant origin such as found in SBO will modulate these actions of linoleic acid, as has been shown for the longer-chain n-3 PUFA of marine oil

    Errors of measurement

    No full text

    Reply

    No full text

    Preventing Fractures by Focusing on Falls

    No full text
    • …
    corecore