55 research outputs found

    Neutrophil Extracellular Traps Are Found in Bronchoalveolar Lavage Fluids of Horses With Severe Asthma and Correlate With Asthma Severity

    Full text link
    peer reviewedAsthma encompasses a spectrum of heterogenous immune-mediated respiratory disorders sharing a similar clinical pattern characterized by cough, wheeze and exercise intolerance. In horses, equine asthma can be subdivided into severe or moderate asthma according to clinical symptoms and the extent of airway neutrophilic inflammation. While severe asthmatic horses are characterized by an elevated neutrophilic inflammation of the lower airways, cough, dyspnea at rest and high mucus secretion, horses with moderate asthma show a milder neutrophilic inflammation, exhibit intolerance to exercise but no labored breathing at rest. Yet, the physiopathology of different phenotypes of equine asthma remains poorly understood and there is a need to elucidate the underlying mechanisms tailoring those phenotypes in order to improve clinical management and elaborate novel therapeutic strategies. In this study, we sought to quantify the presence of neutrophil extracellular traps (NETs) in bronchoalveolar lavage fluids (BALF) of moderate or severe asthmatic horses and healthy controls, and assessed whether NETs correlated with disease severity. To this end, we evaluated the amounts of NETs by measuring cell- free DNA and MPO-DNA complexes in BALF supernatants or by quantifying NETs release by BALF cells by confocal microscopy. We were able to unequivocally identify elevated NETs levels in BALF of severe asthmatic horses as compared to healthy controls or moderate asthmatic horses. Moreover, we provided evidence that BALF NETs release was a specific feature seen in severe equine asthma, as opposed to moderate asthma, and correlated with disease severity. Finally, we showed that NETs could act as a predictive factor for severe equine asthma. Our study thus uniquely identifies NETs in BALF of severe asthmatic horses using three distinct methods and supports the idea that moderate and severe equine asthma do not rely on strictly similar pathophysiological mechanisms. Our data also suggest that NETs represent a relevant biomarker, a putative driver and a potential therapeutic target in severe asthma diseas

    Advances in Pathophysiology of Calcific Aortic Valve Disease Propose Novel Molecular Therapeutic Targets

    Full text link
    Calcific Aortic Valve Disease (CAVD) is the most common heart valve disease and its incidence is expected to rise with aging population. No medical treatment so far has shown slowing progression of CAVD progression. Surgery remains to this day the only way to treat it. Effective drug therapy can only be achieved through a better insight into the pathogenic mechanisms underlying CAVD. The cellular and molecular events leading to leaflets calcification are complex. Upon endothelium cell damage, oxidized LDLs trigger a proinflammatory response disrupting healthy cross-talk between valve endothelial and interstitial cells. Therefore, valve interstitial cells transform into osteoblasts and mineralize the leaflets. Studies have investigated signaling pathways driving and connecting lipid metabolism, inflammation and osteogenesis. This review draws a summary of the recent advances and discusses their exploitation as promising therapeutic targets to treat CAVD and reduce valve replacement

    La valorisation par le diagnostic de performance énergétique

    No full text
    Hego Deveza-Barrau Alexandre. La valorisation par le diagnostic de performance énergétique. In: Droit et Ville, tome 66, 2008. Colloque : Construction et développement durable. Quelle contribution de la filière construction aux enjeux de l’après-Kyoto ? (Toulouse, 22 mai 2008) pp. 97-105

    Prosthetic Aortic Valves: Challenges and Solutions.

    Full text link
    Aortic Valve Disease (AVD) is the most common Valvular Heart Disease (VHD), affecting millions of people worldwide. Severe AVD is treated in most cases with prosthetic aortic valve replacement, which involves the substitution of the native aortic valve with a prosthetic one. In this review we will discuss the different types of prosthetic aortic valves available for implantation and the challenges faced by patients, medical doctors, researchers and manufacturers, as well as the approaches that are taken to overcome them

    Methods to Detect Neutrophil Extracellular Traps in Asthma.

    Full text link
    peer reviewedNeutrophil extracellular traps (NETs) have the ability to regulate many aspects of asthma pathology. NETs can be detected either in bronchoalveolar lavage fluids (BALF) or in lung biopsies. Here, we describe methods to quantify NETs in BALF, namely the quantification of cell-free DNA, or of myeloperoxidase (MPO) or neutrophil elastase (NE) complexed with cell-free DNA. We also explain how to detect NETs in lung biopsies by two distinct techniques. The first technique is based on quantification of the citrullinated form of histone 3 (Cit-H3 , a specific component of NET) by western blot on tissue protein extracts. The second technique is based on the visualization of extracellular structures composed of MPO co-localizing with Cit-H3 in tissue sections by confocal microscopy. Finally, we describe a method allowing for quantification of NET volume in lung sections

    Identification and Quantitation of Neutrophil Extracellular Traps in Human Tissue Sections.

    Full text link
    Neutrophils are one of the first innate immune cells recruited to tissues during inflammation. An important function of neutrophils relies on their ability to release extracellular structures, known as Neutrophil Extracellular Traps or NETs, into their environment. Detecting such NETs in humans has often proven challenging for both biological fluids and tissues; however, this can be achieved by quantitating NET components (e.g., DNA or granule/histone proteins) or by directly visualizing them by microscopy, respectively. Direct visualization by confocal microscopy is preferably performed on formalin-fixed paraffin-embedded (FFPE) tissue sections stained with a fluorescent DNA dye and antibodies directed against myeloperoxidase (MPO) and citrullinated histone 3 (Cit-H3), two components of NETs, following paraffin removal, antigen retrieval, and permeabilization. NETs are defined as extracellular structures that stain double-positive for MPO and Cit-H3. Here, we propose a novel software-based objective method for NET volume quantitation in tissue sections based on the measurement of the volume of structures exhibiting co-localization of Cit-H3 and MPO outside the cell. Such a technique not only allows the unambiguous identification of NETs in tissue sections but also their quantitation and relationship with surrounding tissues. Graphic abstract: Graphical representation of the methodology used to stain and quantitate NETs in human lung tissue

    Biological Effects of Cardiac Magnetic Resonance on Human Blood Cells.

    Full text link
    BACKGROUND: Cardiac magnetic resonance (CMR) is increasingly used for the diagnosis and management of cardiac diseases. Recent studies have reported immediate post-CMR DNA double-strand breaks in T lymphocytes. We sought to evaluate CMR-induced DNA damage in lymphocytes, alterations of blood cells, and their temporal persistence. METHODS AND RESULTS: In 20 prospectively enrolled healthy men (31.4+/-7.9 years), blood was drawn before and after (1-2 hours, 2 days, 1 month, and 1 year) unenhanced 1.5T CMR. Blood cell counts, cell death, and activation status of lymphocytes, monocytes, neutrophils, and platelets were evaluated. The first 2-hour post-CMR were characterized by a small increase of lymphocyte B and neutrophil counts and a transient drop of total lymphocytes because of a decrease in natural killer cells. Among blood cells, only neutrophils and monocytes displayed slight and transient activation. DNA double-strand breaks in lymphocytes were quantified through flow cytometric analysis of H2AX phosphorylation (gamma-H2AX). gamma-H2AX intensity in T lymphocytes did not change early after CMR but increased significantly at day 2 </=1 month before returning to baseline levels of 1-year post-CMR. CONCLUSIONS: Unenhanced CMR is associated with minor but significant immediate blood cell alterations or activations figuring inflammatory response, as well as DNA damage in T lymphocytes observed from day 2 until the first month but disappearing at 1-year follow-up. Although further studies are required to definitely state whether CMR can be used safely, our findings already call for caution when it comes to repeat this examination within a month
    corecore