1,039 research outputs found
Capillary Balancing: Designing Frost-Resistant Lubricant-Infused Surfaces
Slippery lubricant-infused surfaces (SLIPS) have shown great promise for anti-frosting and anti-icing. However, small length scales associated with frost dendrites exert immense capillary suction pressure on the lubricant. This pressure depletes the lubricant film and is detrimental to the functionality of SLIPS. To prevent lubricant depletion, we demonstrate that interstitial spacing in SLIPS needs to be kept below those found in frost dendrites. Densely packed nanoparticles create the optimally sized nanointerstitial features in SLIPS (Nano-SLIPS). The capillary pressure stabilizing the lubricant in Nano-SLIPS balances or exceeds the capillary suction pressure by frost dendrites. We term this concept capillary balancing. Three-dimensional spatial analysis via confocal microscopy reveals that lubricants in optimally structured Nano-SLIPS are not affected throughout condensation (0 °C), extreme frosting (−20 °C to −100 °C), and traverse ice-shearing (−10 °C) tests. These surfaces preserve low ice adhesion (10–30 kPa) over 50 icing cycles, demonstrating a design principle for next-generation anti-icing surfaces.publishedVersionPeer reviewe
Super liquid repellent surfaces for anti-foaming and froth management
Wet and dry foams are prevalent in many industries, ranging from the food processing and commercial cosmetic sectors to industries such as chemical and oil-refining. Uncontrolled foaming results in product losses, equipment downtime or damage and cleanup costs. To speed up defoaming or enable anti-foaming, liquid oil or hydrophobic particles are usually added. However, such additives may need to be later separated and removed for environmental reasons and product quality. Here, we show that passive defoaming or active anti-foaming is possible simply by the interaction of foam with chemically or morphologically modified surfaces, of which the superamphiphobic variant exhibits superior performance. They significantly improve retraction of highly stable wet foams and prevention of growing dry foams, as quantified for beer and aqueous soap solution as model systems. Microscopic imaging reveals that amphiphobic nano-protrusions directly destabilize contacting foam bubbles, which can favorably vent through air gaps warranted by a Cassie wetting state. This mode of interfacial destabilization offers untapped potential for developing efficient, low-power and sustainable foam and froth management
Au-Ag template stripped pattern for scanning probe investigations of DNA arrays produced by Dip Pen Nanolithography
We report on DNA arrays produced by Dip Pen Nanolithography (DPN) on a novel
Au-Ag micro patterned template stripped surface. DNA arrays have been
investigated by atomic force microscopy (AFM) and scanning tunnelling
microscopy (STM) showing that the patterned template stripped substrate enables
easy retrieval of the DPN-functionalized zone with a standard optical
microscope permitting a multi-instrument and multi-technique local detection
and analysis. Moreover the smooth surface of the Au squares (abput 5-10
angstrom roughness) allows to be sensitive to the hybridization of the
oligonucleotide array with label-free target DNA. Our Au-Ag substrates,
combining the retrieving capabilities of the patterned surface with the
smoothness of the template stripped technique, are candidates for the
investigation of DPN nanostructures and for the development of label free
detection methods for DNA nanoarrays based on the use of scanning probes.Comment: Langmuir (accepted
Potential of the Julia programming language for high energy physics computing
Research in high energy physics (HEP) requires huge amounts of computing and
storage, putting strong constraints on the code speed and resource usage. To
meet these requirements, a compiled high-performance language is typically
used; while for physicists, who focus on the application when developing the
code, better research productivity pleads for a high-level programming
language. A popular approach consists of combining Python, used for the
high-level interface, and C++, used for the computing intensive part of the
code. A more convenient and efficient approach would be to use a language that
provides both high-level programming and high-performance. The Julia
programming language, developed at MIT especially to allow the use of a single
language in research activities, has followed this path. In this paper the
applicability of using the Julia language for HEP research is explored,
covering the different aspects that are important for HEP code development:
runtime performance, handling of large projects, interface with legacy code,
distributed computing, training, and ease of programming. The study shows that
the HEP community would benefit from a large scale adoption of this programming
language. The HEP-specific foundation libraries that would need to be
consolidated are identifiedComment: 32 pages, 5 figures, 4 table
Beyond aggression: Androgen-receptor blockade modulates social interaction in wild meerkats
In male vertebrates, androgens are inextricably linked to reproduction, social dominance, and aggression, often at the cost of paternal investment or prosociality. Testosterone is invoked to explain rank-related reproductive differences, but its role within a status class, particularly among subordinates, is underappreciated. Recent evidence, especially for monogamous and cooperatively breeding species, suggests broader androgenic mediation of adult social interaction. We explored the actions of androgens in subordinate, male members of a cooperatively breeding species, the meerkat (Suricata suricatta). Although male meerkats show no rank-related testosterone differences, subordinate helpers rarely reproduce. We blocked androgen receptors, in the field, by treating subordinate males with the antiandrogen, flutamide. We monitored androgen concentrations (via baseline serum and time-sequential fecal sampling) and recorded behavior within their groups (via focal observation). Relative to controls, flutamide-treated animals initiated less and received more high-intensity aggression (biting, threatening, feeding competition), engaged in more prosocial behavior (social sniffing, grooming, huddling), and less frequently initiated play or assumed a ‘dominant’ role during play, revealing significant androgenic effects across a broad range of social behavior. By contrast, guarding or vigilance and measures of olfactory and vocal communication in subordinate males appeared unaffected by flutamide treatment. Thus, androgens in male meerkat helpers are aligned with the traditional trade-off between promoting reproductive and aggressive behavior at a cost to affiliation. Our findings, based on rare endocrine manipulation in wild mammals, show a more pervasive role for androgens in adult social behavior than is often recognized, with possible relevance for understanding tradeoffs in cooperative systems
Precise measurement of the W-boson mass with the CDF II detector
We have measured the W-boson mass MW using data corresponding to 2.2/fb of
integrated luminosity collected in proton-antiproton collisions at 1.96 TeV
with the CDF II detector at the Fermilab Tevatron collider. Samples consisting
of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement
MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most
precise measurement of the W-boson mass to date and significantly exceeds the
precision of all previous measurements combined
- …