394 research outputs found
Growth of Intermediate-Mass Black Holes in Globular Clusters
We present results of numerical simulations of sequences of binary-single
scattering events of black holes in dense stellar environments. The simulations
cover a wide range of mass ratios from equal mass objects to 1000:10:10 solar
masses and compare purely Newtonian simulations to simulations in which
Newtonian encounters are interspersed with gravitational wave emission from the
binary. In both cases, the sequence is terminated when the binary's merger time
due to gravitational radiation is less than the arrival time of the next
interloper. We find that black hole binaries typically merge with a very high
eccentricity (0.93 < e < 0.95 pure Newtonian; 0.85 < e < 0.90 with
gravitational wave emission) and that adding gravitational wave emission
decreases the time to harden a binary until merger by ~ 30% to 40%. We discuss
the implications of this work for the formation of intermediate-mass black
holes and gravitational wave detection.Comment: 28 pages including 9 figures, submitted to Ap
Star Clusters with Primordial Binaries: II. Dynamical Evolution of Models in a Tidal Field
[abridged] We extend our analysis of the dynamical evolution of simple star
cluster models, in order to provide comparison standards that will aid in
interpreting the results of more complex realistic simulations. We augment our
previous primordial-binary simulations by introducing a tidal field, and
starting with King models of different central concentrations. We present the
results of N-body calculations of the evolution of equal-mass models, starting
with primordial binary fractions of 0 - 100 %, and N values from 512 to 16384.
We also attempt to extrapolate some of our results to the larger number of
particles that are necessary to model globular clusters. We characterize the
steady-state `deuterium main sequence' phase in which primordial binaries are
depleted in the core in the process of `gravitationally burning'. In this phase
we find that the ratio of the core to half-mass radius, r_c/r_h, is similar to
that measured for isolated systems. In addition to the generation of energy due
to hardening and depletion of the primordial binary population, the overall
evolution of the star clusters is driven by a competing process: the tidal
disruption of the system. We find that the depletion of primordial binaries
before tidal dissolution of the system is possible only if the initial number
is below 0.05 N, in the case of a King model with W_0=7 and N=4096 (which is
one of our longest living models). We compare our findings, obtained by means
of direct N-body simulations but scaled, where possible, to larger N, with
similar studies carried out by means of Monte Carlo methods.Comment: 15 pages, 18 figures, matches MNRAS accepted version, some sections
reorganized but no major change
Star Clusters with Primordial Binaries: I. Dynamical Evolution of Isolated Models
In order to interpret the results of complex realistic star cluster
simulations, which rely on many simplifying approximations and assumptions, it
is essential to study the behavior of even more idealized models, which can
highlight the essential physical effects and are amenable to more exact
methods. With this aim, we present the results of N-body calculations of the
evolution of equal-mass models, starting with primordial binary fractions of 0
- 100 %, with values of N ranging from 256 to 16384. This allows us to
extrapolate the main features of the evolution to systems comparable in
particle number with globular clusters. In this range, we find that the
steady-state `deuterium main sequence' is characterized by a ratio of the core
radius to half-mass radius that follows qualitatively the analytical estimate
by Vesperini & Chernoff (1994), although the N dependence is steeper than
expected. Interestingly, for an initial binary fraction f greater than 10%, the
binary heating in the core during the post collapse phase almost saturates
(becoming nearly independent of f), and so little variation in the structural
properties is observed. Thus, although we observe a significantly lower binary
abundance in the core with respect to the Fokker-Planck simulations by Gao et
al. (1991), this is of little dynamical consequence. At variance with the study
of Gao et al. (1991), we see no sign of gravothermal oscillations before 150
halfmass relaxation times. At later times, however, oscillations become
prominent. We demonstrate the gravothermal nature of these oscillations.Comment: 14 pages, 22 figures, MNRAS accepte
The M/L ratio of massive young clusters
We point out a strong time-evolution of the mass-to-light conversion factor
\eta commonly used to estimate masses of dense star clusters from observed
cluster radii and stellar velocity dispersions. We use a gas-dynamical model
coupled with the Cambridge stellar evolution tracks to compute line-of-sight
velocity dispersions and half-light radii weighted by the luminosity. Stars at
birth are assumed to follow the Salpeter mass function in the range [0.15--17
M_\sun]. We find that , and hence the estimated cluster mass, increases
by factors as large as 3 over time-scales of 20 million years. Increasing the
upper mass limit to 50 M_\sun leads to a sharp rise of similar amplitude but
in as little as 10 million years.
Fitting truncated isothermal (Michie-King) models to the projected light
profile leads to over-estimates of the concentration par ameter c of compared to the same functional fit applied to the proj ected
mass density.Comment: Draft version of an ApJ lette
On the effects of dynamical evolution on the initial mass function of globular clusters
In this paper we show the results of a large set of N-body simulations
modelling the evolution of globular clusters driven by relaxation,stellar
evolution,disk shocking and including the effects of the tidal field of the
Galaxy. We investigate the evolution of multi-mass models with a power-law
initial mass function (IMF) starting with different initial masses,
concentrations, slopes of the IMF and located at different galactocentric
distances. We show to what extent the effects of the various evolutionary
processes alter the shape of the IMF and to what extent these changes depend on
the position of the cluster in the Galaxy. Both the changes in the global mass
function and in the local one (measured at different distances from the cluster
center) are investigated showing whether and where the local mass function
keeps memory of the IMF and where it provides a good indication of the current
global mass function. The evolution of the population of white dwarfs is also
followed in detail and we supply an estimate of the fraction of the current
value of the total mass expected to be in white dwarfs depending on the main
initial conditions for the cluster (mass and position in the Galaxy).Simple
analytical expression by which it is possible to calculate the main quantities
of interest (total mass, fraction of white dwarfs, slope of the mass function)
at any time t for a larger number of different initial conditions than those
investigated numerically have been derived.Comment: 20 pages LaTeX (MNRAS style), 23 figures, MNRAS (in press
Solvable model of a self-gravitating system
We introduce and discuss an effective model of a self-gravitating system
whose equilibrium thermodynamics can be solved in both the microcanonical and
the canonical ensemble, up to a maximization with respect to a single variable.
Such a model can be derived from a model of self-gravitating particles confined
on a ring, referred to as the self-gravitating ring (SGR) model, allowing a
quantitative comparison between the thermodynamics of the two models. Despite
the rather crude approximations involved in its derivation, the effective model
compares quite well with the SGR model. Moreover, we discuss the relation
between the effective model presented here and another model introduced by
Thirring forty years ago. The two models are very similar and can be considered
as examples of a class of minimal models of self-gravitating systems.Comment: 21 pages, 6 figures; submitted to JSTAT for the special issue on
long-range interaction
- âŠ