197 research outputs found

    Emergent Nodal Excitations due to the Coexistence of Superconductivity and Antiferromagnetism: Cases with and without Inversion Symmetry

    Full text link
    We argue the emergence of nodal excitations due to the coupling with static antiferromagnetic order in fully-gapped superconducting states in both cases with and without inversion symmetry. This line node structure is not accompanied with the sign change of the superconducting gap, in contrast to usual unconventional Cooper pairs with higher angular momenta. In the case without inversion symmetry, the stability of the nodal excitations crucially depends on the direction of the antiferromagnetic staggered magnetic moment. A possible realization of this phenomenon in CePt3_3Si is discussed.Comment: 4 pages, 7 figure

    Conductance fluctuations in mesoscopic normal-metal/superconductor samples

    Full text link
    We study the magnetoconductance fluctuations of mesoscopic normal-metal/superconductor (NS) samples consisting of a gold-wire in contact with a niobium film. The magnetic field strength is varied over a wide range, including values that are larger than the upper critical field B_c2 of niobium. In agreement with recent theoretical predictions we find that in the NS sample the rms of the conductance fluctuations (CF) is by a factor of 2.8 +/- 0.4 larger than in the high field regime where the entire system is driven normal conducting. Further characteristics of the CF are discussed.Comment: 4 pages, REVTEX, 3 eps-figures included. To be published in Phys. Rev. Lett.. Changes: one misplaced figure correcte

    Anomalous specific heat jump in the heavy fermion superconductor CeCoIn5_5

    Full text link
    We study the anomalously large specific heat jump and its systematic change with pressure in CeCoIn5_5 superconductor. Starting with the general free energy functional of the superconductor for a coupled electron boson system, we derived the analytic result of the specific heat jump of the strong coupling superconductivity occurring in the coupled electron boson system. Then using the two component spin-fermion model we calculate the specific heat coefficient C(T)/TC(T)/T both for the normal and superconducting states and show a good agreement with the experiment of CeCoIn5_5. Our result also clearly demonstrated that the specific heat coefficient C(T)/TC(T)/T of a coupled electron boson system can be freely interpreted as a renormalization either of the electronic or of the bosonic degrees of freedom.Comment: 5 pages, 2 figure

    Local estimates for entropy densities in coupled map lattices

    Full text link
    We present a method to derive an upper bound for the entropy density of coupled map lattices with local interactions from local observations. To do this, we use an embedding technique being a combination of time delay and spatial embedding. This embedding allows us to identify the local character of the equations of motion. Based on this method we present an approximate estimate of the entropy density by the correlation integral.Comment: 4 pages, 5 figures include

    Critical magnetic fluctuations induced superconductivity and residual density of states in CeRhIn5CeRhIn_5 superconductor

    Full text link
    We propose the multiband extension of the spin-fermion model to address the superconducting d-wave pairing due to magnetic interaction near critical point. We solve the unrestricted gap equation with a general d-wave symmetry gap and find that divergent magnetic correlation length ξ\xi leads to the very unharmonic shape of the gap function with shallow gap regions near nodes. These regions are extremely sensitive to disorder. Small impurity concentration induces substantial residual density of states. We argue that we can understand the large Nres(0)=limT0Cp(T)/TN_{res}(0) = \lim_{T\to 0} C_p(T)/T value and its pressure dependence of the recently discovered CeRhIn5CeRhIn_5 superconductor under pressure within this approach.Comment: 5 figure

    Angular Position of Nodes in the Superconducting Gap of Quasi-2D Heavy-Fermion Superconductor CeCoIn_5

    Full text link
    The thermal conductivity of the heavy-fermion superconductor CeCoIn_5 has been studied in a magnetic field rotating within the 2D planes. A clear fourfold symmetry of the thermal conductivity which is characteristic of a superconducting gap with nodes along the (+-pi,+-pi)-directions is resolved. The thermal conductivity measurement also reveals a first order transition at H_c2, indicating a Pauli limited superconducting state. These results indicate that the symmetry most likely belongs to d_{x^2-y^2}, implying that the anisotropic antiferromagnetic fluctuation is relevant to the superconductivity.Comment: 5 Pages, 4 figure

    New Superconducting and Magnetic Phases Emerge on the Verge of Antiferromagnetism in CeIn3_3

    Full text link
    We report the discovery of new superconducting and novel magnetic phases in CeIn3_3 on the verge of antiferromagnetism (AFM) under pressure (PP) through the In-nuclear quadrupole resonance (NQR) measurements. We have found a PP-induced phase separation of AFM and paramagnetism (PM) without any trace for a quantum phase transition in CeIn3_3. A new type of superconductivity (SC) was found in P=2.282.5P=2.28-2.5 GPa to coexist with AFM that is magnetically separated from PM where the heavy fermion SC takes place. We propose that the magnetic excitations such as spin-density fluctuations induced by the first-order magnetic phase transition might mediate attractive interaction to form Cooper pairs.Comment: 4 pages, 4 EPS figures, submitted to J. Phys. Soc. Jp

    Strong-Coupling Superconductivity of CeIrSi3_3 with the Non-centrosymmetric Crystal Structure

    Full text link
    We studied the pressure-induced superconductor CeIrSi3_3 with the non-centrosymmetric tetragonal structure under high pressure. The electrical resistivity and ac heat capacity were measured in the same run for the same sample. The critical pressure was determined to be PcP_{\rm c} = 2.25 GPa, where the antiferromagnetic state disappears. The heat capacity CacC_{\rm ac} shows both antiferromagnetic and superconducting transitions at pressures close to PcP_{\rm c}. On the other hand, the superconducting region is extended to high pressures of up to about 3.5 GPa, with the maximum transition temperature TscT_{\rm sc} = 1.6 K around 2.52.72.5-2.7 GPa. At 2.58 GPa, a large heat capacity anomaly was observed at TscT_{\rm sc} = 1.59 K. The jump of the heat capacity in the form of ΔCac/Cac(Tsc){\Delta}{C_{\rm ac}}/C_{\rm ac}(T_{\rm sc}) is 5.7 ±\pm 0.1. This is the largest observed value among previously reported superconductors, indicating the strong-coupling superconductivity. The electronic specific heat coefficient at TscT_{\rm sc} is, however, approximately unchanged as a function of pressure, even at PcP_{\rm c}.Comment: This paper will be published in J. Phys. Soc. Jpn. on the August issue of 200

    Thermodynamic and Transport Properties of CeMg2Cu9 under Pressure

    Full text link
    We report the transport and thermodynamic properties under hydrostatic pressure in the antiferromagnetic Kondo compound CeMg2Cu9 with a two-dimensional arrangement of Ce atoms. Magnetic specific heat Cmag(T) shows a Schottky-type anomaly around 30 K originating from the crystal electric field (CEF) splitting of the 4f state with the first excited level at \Delta_{1}/kB = 58 K and the second excited level at \Delta_{2}/kB = 136 K from the ground state. Electric resistivity shows a two-peaks structure due to the Kondo effect on each CEF level around T_{1}^{max} = 3 K and T_{2}^{max} = 40 K. These peaks merge around 1.9 GPa with compression. With increasing pressure, Neel temperature TN initially increases and then change to decrease. TN finally disappears at the quantum critical point Pc = 2.4 GPa.Comment: 10 pages, 6 figure

    Magnetism, Spin-Orbit Coupling, and Superconducting Pairing in UGe2_2

    Full text link
    A consistent picture on the mean-field level of the magnetic properties and electronic structure of the superconducting itinerant ferromagnet UGe2_2 is shown to require inclusion of correlation effects beyond the local density approximation (LDA). The "LDA+U" approach reproduces both the magnitude of the observed moment, composed of strongly opposing spin and orbital parts, and the magnetocrystalline anisotropy. The largest Fermi surface sheet is comprised primarily of spin majority states with orbital projection mm_{\ell}=0, suggesting a much simpler picture of the pairing than is possible for general strong spin-orbit coupled materials. This occurrence, and the quasi-two-dimensional geometry of the Fermi surface, support the likelihood of magnetically mediated p-wave triplet pairing.Comment: accepted for publication in Phys. Rev. Lett; URL for better quality image of Fig.3 (2MB) at http://yammer.ucdavis.edu/public/UGe2/fig3.ep
    corecore