45 research outputs found

    DESMOSTACHYA BIPINNATA - A NOVEL FARMING METHOD

    Get PDF
    Grasses are the most flourishing plants on earth as monocotyledonous plants. They have been a survivor on the planet despite of various ecological changes. They deserve the medicinal value and therefore considered as novel repositories. The grass family is considered as sacred, it has great significance in Ayurveda because of medicinal as well as clinical properties. Methods: Kusha grows commonly and abundantly at agricultural field especially in dry and sandy soil. As are more grass species found in the moderately temperate and moist regionof India whereas Kusha can be grown indoors and outdoors. Results: Growth of plants has seen within duration of 20 to 25 days. In this study effort made to explain the naturalcultivation methods for getting best medicinal effect in drug Kusha. Efficacy of the naturally grown plant shown the good result in laboratory investigations as compare to the manual grown. Usage of single drug is cost effective in day today practice by adopting natural farming method. Conclusion: By following proper plantation methods one can yield high medicinal properties in the drugs to reach the expected result. Key words: Cultivation methods, Kusha, Mutravaha Srotas, Trinapanchamula

    SmartStep: A Fully Integrated, Low-Power Insole Monitor

    No full text
    Shoe-mounted wearable sensors can be used in applications, such as activity monitoring, gait analysis, post-stroke rehabilitation, body weight measurements and energy expenditure studies. Such wearable sensors typically require the modification or alteration of the shoe, which is not typically feasible for large populations without the direct involvement of shoe manufacturers. This article presents an insole-based wearable sensor (SmartStep) that has its electronics fully embedded into a generic insole, which is usable with a large variety of shoes and, thus, resolves the need for shoe modification. The SmartStep is an always-on electronic device that comprises a 3D accelerometer, a 3D gyroscope and resistive pressure sensors implemented around a CC2540 system-on-chip with an 8051 processor core, Bluetooth low energy (BLE) connectivity and flash memory buffer. The SmartStep is wirelessly interfaced to an Android smart phone application with data logging and visualization capabilities. This article focuses on low-power implementation methods and on the method developed for reliable data buffering, alleviating intermittent connectivity resulting from the user leaving the vicinity of the smart phone. The conducted tests illustrate the power consumption for several possible usage scenarios and the reliability of the data retention method. The trade-off between the power consumption and supported functionality is discussed, demonstrating that SmartStep can be worn for more than two days between battery recharges. The results of the mechanical reliability test on the SmartStep indicate that the pressure sensors in the SmartStep tolerated prolonged human wear. The SmartStep system collected more than 98.5% of the sensor data, in real usage scenarios, having intermittent connectivity with the smart phone

    A Comparative Review of Footwear-Based Wearable Systems

    No full text
    Footwear is an integral part of daily life. Embedding sensors and electronics in footwear for various different applications started more than two decades ago. This review article summarizes the developments in the field of footwear-based wearable sensors and systems. The electronics, sensing technologies, data transmission, and data processing methodologies of such wearable systems are all principally dependent on the target application. Hence, the article describes key application scenarios utilizing footwear-based systems with critical discussion on their merits. The reviewed application scenarios include gait monitoring, plantar pressure measurement, posture and activity classification, body weight and energy expenditure estimation, biofeedback, navigation, and fall risk applications. In addition, energy harvesting from the footwear is also considered for review. The article also attempts to shed light on some of the most recent developments in the field along with the future work required to advance the field

    Nanostructure Patterning on Flexible Substrates Using Electron Beam Lithography

    No full text
    Patterning nanostructures on flexible substrates plays a key role in the emerging flexible electronics technology. The flexible electronic devices are inexpensive and can be conformed to any shape. The potential applications for such devices are sensors, displays, solar cells, RFID, high-density biochips, optoelectronics etc. E-beam lithography is established as a powerful tool for nanoscale fabrication, but its applicability on insulating flexible substrates is often limited because of surface charging effects. This paper presents the fabrication of nanostructures on insulating flexible substrates using low energy E-beam lithography along with metallic layers for charge dissipation. Nano Structures are patterned on different substrates of materials such as acetate and PET foils. The fabrication process parameters such as the proximity gap of exposure, the exposure dosage and developing conditions have been optimized for each substrate

    Optical Flow-Based Transport on Image Manifolds

    No full text
    An image articulation manifold (IAM) is the collection of images formed by imaging an object that is subject to continuously changing imaging parameters. IAMs arise in a variety of image processing and computer vision applications, where they support a natural low-dimensional embedding of the collection of high-dimensional images. To date IAMs have been studied as embedded submanifolds of Euclidean spaces. Unfortunately, their promise has not been realized in practice, because real world imagery typically contains sharp edges that render IAMs non-differentiable. Moreover, IAMs are also non-isometric to the lowdimensional parameter space under the Euclidean metric. As a result, the standard tools from differential geometry, in particular using linear tangent spaces to transport along the IAM, have limited utility. In this paper, we explore a nonlinear transport operator for IAMs based on the optical flow between images and develop new analytical tools reminiscent of those from differential geometry using the idea of optical flow manifolds (OFMs). We define a new metric for IAMs that satisfies certain local isometry conditions, and we show how to use this metric to develop new tools such as flow fields on IAMs, parallel flow fields, parallel transport, as well as a intuitive notion of curvature. The space of optical flow fields along a path of constant curvature has a natural multi-scale structure via a monoid structure on the space of all flow fields along a path. We also develop lower bounds on approximation errors while approximating non-parallel flow fields by parallel flow fields
    corecore