643 research outputs found

    Influencia de distintas fuentes de sílice en las propiedades físicas y mecánicas de materiales derivados del yeso

    Get PDF
    Gypsum plaster/silica composites prepared by dry blending (0.2-10 %) natural sand, silica fume or silica gel and subsequently hydrated. Their physical and mechanical properties, including normal consistency, setting time, apparent porosity, bulk density and compressive strength, were determined after hydration for 7- and 28-days. The results indicated that adding different forms of silica lowered the bulk density and increased the normal consistency, setting time, apparent porosity and, to some limited extent, compressive strength of the composites. This improvement in properties can be attributed to the existence of silica in the interstitial pores in the hardened plaster matrices. While most of the composites revealed only scant rises in compressive strength, their composition was beneficial in so far as it included either a readily available low-cost constituent (sand) or industrial by-products. Consequently, the formed plaster-silica composites are of economic value, contribute to a cleaner environment by minimizing waste and can be used for applications where high porosity, lightweight units are required or recommended for low-cost buildings.Se prepararon pastas compuestas de yeso y sílice mediante la mezcla en seco de yeso con distintas proporciones (0,2- 10 %) de arena natural, o gel o humo de sílice, procediéndose a continuación a su hidratación. A fin de determinar las propiedades físicas y mecánicas de las pastas, a los 7 y los 28 días de hidratación se hallaron su fluidez, tiempo de fraguado, porosidad aparente, densidad aparente y resistencia a la compresión. Los resultados obtenidos indican que al incorporar las distintas modalidades de sílice a la mezcla, disminuyó la densidad aparente y aumentaron la fluidez, el tiempo de fraguado, la porosidad aparente y, en menor medida, la resistencia a la compresión de las muestras. Se considera que esta mejora de las propiedades del material se debe a la presencia de sílice en los poros intersticiales de las matrices endurecidas de yeso. Aunque la resistencia a la compresión de la mayoría de las pastas ensayadas apenas aumentó, estas se beneficiaron de la presencia en su composición de elementos de bajo coste como la arena o los distintos subproductos industriales utilizados. Puede concluirse, por lo tanto, que los compuestos de yeso y sílice tienen valor económico y contribuyen a mejorar el medioambiente al valorizar residuos. Por otra parte, son apropiados para las aplicaciones en las que se necesitan o recomiendan elementos de alta porosidad y bajo peso, concretamente en las edificaciones bajas

    Utilization of Some Fruits and Vegetables By-Products to Produce High Dietary Fiber Jam

    Get PDF
    The present study aimed to investigate the chemical composition, antioxidant activity, total phenolic compounds and ?-carotene of carrot peels, apple pomace, banana peels and mandarin peels and their quality in preparing jam. Mandarin and banana peels characterized by its higher crude fiber (12.16 and 5.25%) and vitamin C (68 and 16.6 mg/100g) compared to carrot peels (3.91%) and apple pomace (3.65%). Banana peels contained higher amount of magnesium, potassium, calcium and iron compared to other peels samples. Therefore, jam of banana peels characterized by its higher content in magnesium (758 mg/100g), potassium (779 mg/100g), calcium (191 mg/100g) and iron (59.15 mg/100g). Jam of apple pomace characterized by its higher phosphorus contents (220 mg/100g) followed by jam of banana peels (138 mg/100g), mandarin peels (128 mg/100g) and carrot peels (53 mg/100g). Jam of carrot peels characterized by its higher phenolics content as gallic acid equivalent (87.4 mg/100g) followed by jams of apple pomace (82.5 mg/100g), banana peels (42.7 mg/100g) and mandarin peels (34.6 mg/100g). The same trend was observed in total flavonoids as catechen equivalent (mg CAT/100g) in jams of carrot peels, apple pomace, banana peels and mandarin peels, where they were 35.9, 30.1, 23.5 and 21.7, respectively. Furthermore, jam of carrot peels had higher antioxidant activity, where its DPPH radical, had lower DPPH based IC50 (1.8 ?g/ml) while jam of apple pomace, banana peels and mandarin peels had higher DPPH based IC50 reached to 2.04, 2.21 and 3.34 µg/ml, respectively. The same trend was observed for the ?-carotene radical in tested jam samples. Hunter color parameter showed that jam of mandarin peels had highest lightness (L* = 39.8), followed by jam of carrot peels (29.46), apple pomace (18.27) and banana peels (15.19). Therefore, jam of banana peels was darker than other tested peels samples. Sensory evaluation showed that jam of apple pomace characterized by its higher taste and odor, followed by jam of mandarin peels, banana peels and carrot peels. Color of tested jam of carrot, banana or mandarin peels was darker than apple pomace jam. Also, jam of apple pomace gave higher scores in appearance and overall acceptability. Keywords: Jam – Peels – antioxidant activity – Total phenolics– Total Flavonoid

    Morphological and molecular characterization of somaclonal variations in tissue culture-derived banana plants

    Get PDF
    AbstractIn this study, 40000 tissue culture-derived banana plants (vitroplants) at different growth stages, i.e. acclimatization, nursery and open field of banana (Musa spp.) cultivar ‘Grand Naine’ were screened for somaclonal variations using morphological investigations and molecular characterization. The total detected variants were grouped into 25 off-types (two of them died) in addition to the normal plant. Random Amplified Polymorphic DNA (RAPD) was carried out to study the differences among the normal cultivar ‘Grand Naine’ and its 23 variants using 17 arbitrary primers. Cluster analysis results revealed that ‘winged petiole’ and ‘deformed lamina’ were more related to the normal plant. However, ‘Giant plant’ and ‘weak plant’ related to each other and clustered with normal plant. According to principal coordinate analysis, most of the variants were aggregated nearly, whereas ‘variegated plant’ was separated apart from the other variants. This may reflect the genetic difference between ‘variegated plant’ and the other variants. The results obtained from both molecular and morphological analyses were in contiguous with better resolution when using the PCOORDA analysis than cluster analysis. Thus, it can be said that molecular markers can be used to eliminate the undesirable somaclonal variants from the lab without additional culture of the vitroplants in the field in order to save time and efforts

    The crystal structure of 5-(2-(4-fluorophenyl)hydrazono)-4-methyl-2-((3-(5-methyl-1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)methylene) hydrazono)-2,5-dihydrothiazole dimethylformamide monosolvate, C30H25FN10S?C3H7NO

    Get PDF
    C30H25FN10S⋅C3H7NO, triclinic, P1̄ (no. 2), a = 10.9189(6) Å, b = 12.3898(7) Å, c = 13.9206(7) Å, α = 199.412(4)°, β = 110.024(5)°, γ = 105.904(5)°, V = 1631.17(17) Å3, Z = 2, Rgt(F) = 0.0536, wRref(F2) = 0.1471, T = 296 K

    Crystal structure of 2-((3-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)methylene)-1H-indene-1,3(2H)-dione, C28H19N5O2

    Get PDF
    Abstract C28H19N5O2, monoclinic, Cc (no. 9), a = 13.9896(9) Å, b = 21.9561(14) Å, c = 7.1643(5) Å, β = 91.782(6)°, V = 2199.5(3) Å3, Z = 4, R gt(F) = 0.0632, wR ref(F 2) = 0.1727, T = 150(2) K.</jats:p

    The crystal structure of 2-(3-(4-bromophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-8H-indeno[1,2-d]thiazole, C25H17BrFN3S

    Get PDF
    C25H17BrFN3S, triclinic, P1̄ (no. 2), a = 11.2926(6) Å, b = 11.5832(4) Å, c = 16.9974(9) Å, α = 109.211(4)°, β = 90.211(4)°, γ = 95.290(4))°, V = 2089.21(18) Å3, Z = 4, R gt(F) = 0.0580, wR ref(F 2) = 0.1797, T = 296 K

    Crystal structure of (E)-5-((4-chlorophenyl)diazenyl)-2-(5-(4-fluorophenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl)-4-methylthiazole, C23H17ClFN5S2

    Get PDF
    Abstract C23H17ClFN5S2, monoclinic, P21/c (no. 14), a = 20.9691(12) Å, b = 11.5316(6) Å, c = 9.2546(4) Å, β = 95.484(4)°, V = 2227.6(2) Å3, Z = 4, R gt(F) = 0.0468, wR ref(F 2) = 0.1126, T = 296 K.</jats:p

    Crystal structure of 1-phenyl-N′-(1-phenyl-5-(thiophen-2-yl)-1H-pyrazole-3-carbonyl)-5-(thiophen-2-yl)-1H-pyrazole-3-carbohydrazide, C28H20N6O2S2

    Get PDF
    C28H20N6O2S2, triclinic, P1̅ (no. 2), a = 10.6738(6) Å, b = 11.7869(7) Å, c = 12.5381(7) Å, α = 112.842(6)°, β = 91.963(4)°, γ = 116.129(6)°, V = 1264.38(15) Å3, Z = 2, Rgt(F) = 0.0523, wRref(F2) = 0.1390, T = 296(2) K

    Crystal structure of (E)-3-(3-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)-1-phenylprop-2-en-1-one, C27H21N5O

    Get PDF
    C27H21N5O, triclinic, P1̄ (no. 2), a = 8.1464(7) Å, b = 10.3861(8) Å, c = 13.2507(9) Å, α = 84.898(6)°, β = 89.413(6)°, γ = 80.351(7)°, V = 1100.88(15) Å3, Z = 2, Rgt(F) = 0.0648, wRref(F2) = 0.1726, T = 296(2) K
    corecore