19 research outputs found
Variation in protein abundance profiles in the M. semitendinosus of lambs bred from sires selected on the basis of growth and muscling potential
Relative abundance of proteins localised in the nuclear-enriched, total cell membrane and cytosolic fractions of the semitendinosus muscle was compared between lambs bred from control (C), high muscling (M), and high growth rate (G) sires. In total, 31 proteins were identified whose abundance was differentially regulated between sire type. Differences in hind-limb muscle development between M lambs and C and G lambs were reflected in levels of proteins that regulate or function in cellular mechanisms of protein and energy metabolism. Despite no apparent difference in hind-limb muscle growth in G lambs compared to C, G lambs exhibited marked differences in proteins involved in regulation and function of energy metabolism. These results detail pathways that can be specifically targeted to enhance muscle accretion and growth in lambs. The development of means to manipulate these cellular mechanisms may yield greater gains in muscle accretion and growth rate than breeding on the basis for genetic capacity alone
Wayfinding decision situations: a conceptual model and evaluation
Humans engage in wayfinding many times a day. We try to find our way in urban environments when walking towards our work places or when visiting a city as tourists. In order to reach the targeted destination, we have to make a series of wayfinding decisions of varying complexity. Previous research has focused on classifying the complexity of these wayfinding decisions, primarily looking at the complexity of the decision point itself (e.g., the number of possible routes or branches). In this paper, we proceed one step further by incorporating the user, instructions, and environmental factors into a model that assesses the complexity of a wayfinding decision. We constructed and evaluated three models using data collected from an outdoor wayfinding study. Our results suggest that additional factors approximate the complexity of a wayfinding decision better than the simple model using only the number of branches as a criterion