18 research outputs found
Phase diagram of the LaCaMnO compound for
We have studied the phase diagram of LaCaMnO for using neutron powder diffraction and magnetization measurements. At
300 K all samples are paramagnetic and single phase with crystallographic
symmetry . As the temperature is reduced a structural transition is
observed which is to a charge-ordered state only for certain x. On further
cooling the material passes to an antiferromagnetic ground state with Neel
temperature that depends on x. For the structural
transformation occurs at the same temperature as the magnetic transition.
Overall, the neutron diffraction patterns were explained by considering four
phase boundaries for which LaCaMnO forms a distinct phase: the
CE phase at , the charge-ordered phase at x=2/3, the monoclinic and
C-type magnetic structure at and the G-type magnetic structure at
x=1. Between these phase boundaries the magnetic reflections suggest the
existence of mixed compounds containing both phases of the adjacent phase
boundaries in a ratio determined by the lever rule
Recommended from our members
Giant magnetoresistance materials for magnetic recording technology
This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This work focused on a class of transition-metal-oxide (TMO) materials (LaMnO{sub 3} doped with Ca, Ba, or Sr) that exhibits an insulator-to-metal transition near a ferromagnetic phase transition temperature. This yields a very large magnetoresistance; thus these materials may have important uses as magnetic sensors in a variety of applications, ranging from automobiles to read heads for magnetic storage. In addition, the transport current in the ferromagnetic state is likely to be very highly polarized, which means that additional device applications using the phenomena of spin-polarized tunneling can be envisioned. Use of these materials as magnetic sensors depends upon learning to control the synthesis parameters (principally temperature, pressure and composition) to achieve a specific carrier concentration and/or mobility. A second challenge is the high magnetic fields ({ge}1 Tesla) currently required to achieve a large change in resistance. The authors began an investigation of two novel approaches to this field-sensitivity problem, involving the development of multilayer structures of the TMO materials. Finally, they began to explore the use of epitaxial strain as a means of changing the transport properties in thin-film multilayers