66 research outputs found

    Telomerase expression is sufficient for chromosomal integrity in cells lacking p53 dependent G(1 )checkpoint function

    Get PDF
    BACKGROUND: Secondary cultures of human fibroblasts display a finite lifespan ending at senescence. Loss of p53 function by mutation or viral oncogene expression bypasses senescence, allowing cell division to continue for an additional 10 – 20 doublings. During this time chromosomal aberrations seen in mitotic cells increase while DNA damage and decatenation checkpoint functions in G(2 )cells decrease. METHODS: To explore this complex interplay between chromosomal instability and checkpoint dysfunction, human fibroblast lines were derived that expressed HPV16E6 oncoprotein or dominant-negative alleles of p53 (A143V and H179Q) with or without the catalytic subunit of telomerase. RESULTS: Cells with normal p53 function displayed 86 – 93% G(1 )arrest after exposure to 1.5 Gy ionizing radiation (IR). Expression of HPV16E6 or p53-H179Q severely attenuated G(1 )checkpoint function (3 – 20% arrest) while p53-A143V expression induced intermediate attenuation (55 – 57% arrest) irrespective of telomerase expression. All cell lines, regardless of telomerase expression or p53 status, exhibited a normal DNA damage G(2 )checkpoint response following exposure to 1.5 Gy IR prior to the senescence checkpoint. As telomerase-negative cells bypassed senescence, the frequencies of chromosomal aberrations increased generally congruent with attenuation of G(2 )checkpoint function. Telomerase expression allowed cells with defective p53 function to grow >175 doublings without chromosomal aberrations or attenuation of G(2 )checkpoint function. CONCLUSION: Thus, chromosomal instability in cells with defective p53 function appears to depend upon telomere erosion not loss of the DNA damage induced G(1 )checkpoint

    <html>Efficacy of the combination of MEK and CDK4/6 inhibitors <i>in vitro</i> and <i>in vivo</i> in KRAS mutant colorectal cancer models</html>

    Get PDF
    Though the efficacy of MEK inhibitors is being investigated in KRAS-mutant colorectal cancers (CRC), early clinical trials of MEK inhibitor monotherapy did not reveal significant antitumor activity. Resistance to MEK inhibitor monotherapy developed through a variety of mechanisms converging in ERK reactivation. Since ERK increases cyclin D expression and increases entry into the cell cycle, we hypothesized that the combination of MEK inhibitors and CDK4/6 inhibitors would have synergistic antitumor activity and cause tumor regression in vivo

    Cdc7-Dbf4 and the Human S Checkpoint Response to UVC

    Get PDF
    The S checkpoint response to ultraviolet radiation (UVC) that inhibits replicon initiation is dependent on the ATR and Chk1 kinases. Downstream effectors of this response, however, are not well characterized. Data reported here eliminated Cdc25A degradation as intrinsic components of the UVC-induced pathway of inhibition of replicon initiation in human cells. A sublethal dose of UVC (1 J/m2), which selectively inhibits replicon initiation by 50%, failed to reduce the amount of Cdc25A protein or decrease Cdk2/cyclin E kinase activity. Cdc25A degradation was observed after irradiation with cytotoxic fluences of UVC, suggesting that severe inhibition of DNA chain elongation and activation of the replication checkpoint might be responsible for the UVC-induced degradation of Cdc25A. Another proposed effector of the S checkpoint is the Cdc7/Dbf4 complex. Dbf4 interacted with Chk1 in vivo and was recognized as a substrate for Chk1-dependent phosphorylation in vitro. Flag-Dbf4 formed complexes with endogenous Cdc7 and this interaction was stable in UVC-irradiated HeLa cells. Over-expression of Flag- or Myc-tagged Dbf4 abrogated the S checkpoint response to UVC. These findings implicate a Dbf4-dependent kinase as a possible target of the ATR- and Chk1-dependent S checkpoint response to UVC

    Oxidative Phosphorylation Is a Metabolic Vulnerability in Chemotherapy-Resistant Triple-Negative Breast Cance

    Get PDF
    Oxidative phosphorylation (OXPHOS) is an active metabolic pathway in many cancers. RNA from pretreatment biopsies from patients with triple-negative breast cancer (TNBC) who received neoadjuvant chemotherapy demonstrated that the top canonical pathway associated with worse outcome was higher expression of OXPHOS signature. IACS-10759, a novel inhibitor of OXPHOS, stabilized growth in multiple TNBC patient-derived xenografts (PDX). On gene expression profiling, all of the sensitive models displayed a basal-like 1 TNBC subtype. Expression of mitochondrial genes was significantly higher in sensitive PDXs. An in vivo functional genomics screen to identify synthetic lethal targets in tumors treated with IACS-10759 found several potential targets, including CDK4. We validated the antitumor efficacy of the combination of palbociclib, a CDK4/6 inhibitor, and IACS-10759 in vitro and in vivo. In addition, the combination of IACS-10759 and multikinase inhibitor cabozantinib had improved antitumor efficacy. Taken together, our data suggest that OXPHOS is a metabolic vulnerability in TNBC that may be leveraged with novel therapeutics in combination regimens. SIGNIFICANCE: These findings suggest that triple-negative breast cancer is highly reliant on OXPHOS and that inhibiting OXPHOS may be a novel approach to enhance efficacy of several targeted therapies

    BET Bromodomain Inhibition as a Therapeutic Strategy to Target c-Myc

    Get PDF
    SummaryMYC contributes to the pathogenesis of a majority of human cancers, yet strategies to modulate the function of the c-Myc oncoprotein do not exist. Toward this objective, we have targeted MYC transcription by interfering with chromatin-dependent signal transduction to RNA polymerase, specifically by inhibiting the acetyl-lysine recognition domains (bromodomains) of putative coactivator proteins implicated in transcriptional initiation and elongation. Using a selective small-molecule bromodomain inhibitor, JQ1, we identify BET bromodomain proteins as regulatory factors for c-Myc. BET inhibition by JQ1 downregulates MYC transcription, followed by genome-wide downregulation of Myc-dependent target genes. In experimental models of multiple myeloma, a Myc-dependent hematologic malignancy, JQ1 produces a potent antiproliferative effect associated with cell-cycle arrest and cellular senescence. Efficacy of JQ1 in three murine models of multiple myeloma establishes the therapeutic rationale for BET bromodomain inhibition in this disease and other malignancies characterized by pathologic activation of c-Myc.PaperFlic
    • …
    corecore