27 research outputs found

    Comparison of 2D and 3D calculation of left ventricular torsion as circumferential-longitudinal shear angle using cardiovascular magnetic resonance tagging

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To compare left ventricular (LV) torsion represented as the circumferential-longitudinal (CL) shear angle between 2D and 3D quantification, using cardiovascular magnetic resonance (CMR).</p> <p>Methods</p> <p>CMR tagging was performed in six healthy volunteers. From this, LV torsion was calculated using a 2D and a 3D method. The cross-correlation between both methods was evaluated and comparisons were made using Bland-Altman analysis.</p> <p>Results</p> <p>The cross-correlation between the curves was <it>r</it><sup>2 </sup>= 0.97 ± 0.02. No significant time-delay was observed between the curves. Bland-Altman analysis revealed a significant positive linear relationship between the difference and the average value of both analysis methods, with the 2D results showing larger values than the 3D. The difference between both methods can be explained by the definition of the 2D method.</p> <p>Conclusion</p> <p>LV torsion represented as CL shear quantified by the 2D and 3D analysis methods are strongly related. Therefore, it is suggested to use the faster 2D method for torsion calculation.</p

    On the flow dependency of the electrical conductivity of blood

    No full text
    Experiments presented in the literature show that the electrical conductivity of flowing blood depends on flow velocity. The aim of this study is to extend the Maxwell-Fricke theory, developed for a dilute suspension of ellipsoidal particles in an electrolyte, to explain this flow dependency of the conductivity of blood for stationary laminar flow in a rigid cylindrical tube. Furthermore, these theoretical results are compared to earlier published measurement results. To develop the theory, we assumed that blood is a Newtonian fluid and that red blood cells can be represented by oblate ellipsoids. If blood flows through a cylindrical tube, shear stresses will deform and align the red blood cells with one of their long axes aligned parallel to the stream lines. The pathway of a low-frequency (<1 MHz) alternating electrical current will be altered by this orientation and deformation of the red blood cells. Consequently, the electrical conductivity in the flow direction of blood increases. The theoretically predicted flow dependency of the conductivity of blood corresponds well with experimental results. This theoretical study shows that red blood cell orientation and deformation can explain quantitatively the flow dependency of blood conductivity

    COMPUTATION OF STEADY 3-DIMENSIONAL FLOW IN A MODEL OF THE BASILAR ARTERY

    No full text
    The flow in the basilar artery arises from the merging of the flows from the two vertebral arteries. To study the flow phenomena in the basilar artery, computations have been performed using a finite element (FE) method. We consider steady flow in a geometrically symmetric confluence. For simplicity, channels with a rectangular cross-section have been used. Both symmetric and asymmetric flow cases have been considered. The results show that for the Reynolds number of interest the flow downstream of the junction is highly three-dimensional, and that the flow at the end of the basilar artery, where it splits again, will not be fully developed. The computed phenomena have been confirmed by laser Doppler velocity measurements

    Role of plasma viscosity in platelet adhesion

    No full text
    corecore