23 research outputs found

    Simultaneous fitting of X-ray and neutron diffuse scattering data

    Get PDF
    Conventional crystallographic refinement uses the Bragg-peak intensities and gives the single-site average crystal structure. Information about short-range order and local order is contained in the diffuse scattering that is distributed throughout reciprocal space. Models of the short-range order in materials can now be automatically refined. The complementarity of X-ray and neutron diffraction data, and the value of simultaneously refining a structural model against both types of data, has long been known. This paper presents the first refinement of a short-range-order model against comprehensive X-ray and neutron diffuse scattering data simultaneously. The sample is the organic molecular crystal benzil, C14H10O2 (for neutron work H is replaced by D). The technique gives new insights into local order in crystalline materials, including the dynamic correlation structure indicative of the dynamics of molecules in the crystalline state, and successfully overcomes limitations of using only the X-ray data set

    ACCESS-OM2 v1.0: A global ocean-sea ice model at three resolutions

    Get PDF
    We introduce ACCESS-OM2, a new version of the ocean–sea ice model of the Australian Community Climate and Earth System Simulator. ACCESS-OM2 is driven by a prescribed atmosphere (JRA55-do) but has been designed to form the ocean–sea ice component of the fully coupled (atmosphere–land–ocean–sea ice) ACCESS-CM2 model. Importantly, the model is available at three different horizontal resolutions: a coarse resolution (nominally 1∘ horizontal grid spacing), an eddy-permitting resolution (nominally 0.25∘), and an eddy-rich resolution (0.1∘ with 75 vertical levels); the eddy-rich model is designed to be incorporated into the Bluelink operational ocean prediction and reanalysis system. The different resolutions have been developed simultaneously, both to allow for testing at lower resolutions and to permit comparison across resolutions. In this paper, the model is introduced and the individual components are documented. The model performance is evaluated across the three different resolutions, highlighting the relative advantages and disadvantages of running ocean–sea ice models at higher resolution. We find that higher resolution is an advantage in resolving flow through small straits, the structure of western boundary currents, and the abyssal overturning cell but that there is scope for improvements in sub-grid-scale parameterizations at the highest resolution.This research has been supported by the Australian Research Council (grant nos. LP160100073, CE170100023, FT13101532, DP160103130 and DE170100184), the International Space Science Institute (grant no. 406), and the Australian Antarctic Science (grant nos. 4301 and 4390)

    ACCESS-OM2 v1.0: a global ocean-sea ice model at three resolutions

    Get PDF
    We introduce ACCESS-OM2, a new version of the ocean–sea ice model of the Australian Community Climate and Earth System Simulator. ACCESS-OM2 is driven by a prescribed atmosphere (JRA55-do) but has been designed to form the ocean–sea ice component of the fully coupled (atmosphere–land–ocean–sea ice) ACCESS-CM2 model. Importantly, the model is available at three different horizontal resolutions: a coarse resolution (nominally 1∘ horizontal grid spacing), an eddy-permitting resolution (nominally 0.25∘), and an eddy-rich resolution (0.1∘ with 75 vertical levels); the eddy-rich model is designed to be incorporated into the Bluelink operational ocean prediction and reanalysis system. The different resolutions have been developed simultaneously, both to allow for testing at lower resolutions and to permit comparison across resolutions. In this paper, the model is introduced and the individual components are documented. The model performance is evaluated across the three different resolutions, highlighting the relative advantages and disadvantages of running ocean–sea ice models at higher resolution. We find that higher resolution is an advantage in resolving flow through small straits, the structure of western boundary currents, and the abyssal overturning cell but that there is scope for improvements in sub-grid-scale parameterizations at the highest resolution

    Diffuse X-ray scattering from 4,4-dimethoxybenzil, C 16 H 14 O 4 : analysis via automatic refinement of a Monte Carlo model

    No full text
    A recently developed method for fitting a Monte Carlo computer-simulation model to observed single-crystal diffuse X-ray scattering has been used to study the diffuse scattering in 4,4′-dimethoxybenzil, C16H 14O4. A model involving only nine parameters

    X-ray diffuse scattering from HTMA: analysis via a Monte Carlo model

    No full text
    Hexamethylenetetramine (HMT, C6H12N4, also referred to as urotropin) and azelaic acid [A, HOOC - (CH2) 7 - COOH] form a co-crystal or adduct (HMTA, also referred to as urotropin azelate) which exhibits several structural phases as a function of temperature. At room temperature, the structure is orthorhombic, but shows substantial disorder. Here, this disorder is explored by analyzing the diffuse scattering from single crystals of HMTA via Monte Carlo simulation. The disorder is in part occupational, with two orientations of azelaic acid occurring, and in part thermally induced, which is to say dynamic. The occupational disorder can be thought of as a combination of limited-range in-plane (bc plane) negative correlations combined with effectively zero correlation between planes (along a), rather like stacking faults. Size effect, the cross-correlation between molecular orientation and displacement from average position, is required to reproduce the observed diffuse scattering

    Modelling disorder in 3,3-dimethoxybenzil, C 16 H 14 O 4

    No full text
    This work is part of an extended study of benzil (C14H 10O2) and some of its derivatives which aims to understand the role of molecular flexibility in crystal packing and polymorphism. Significant steps have been made in modelling the structured thermal diffuse scattering from 3,3′-dimethoxybenzil, C16H14O 4. It appears that the structure can be considered as a stack of layers of molecules in which interactions are strongest within the layers. The layers interact weakly along the a direction but more strongly along c, so shearing of the planes relative to each other is energetically likely. The molecule must be treated as flexible for a good model to be found
    corecore