2,657 research outputs found
Participatory plant breeding: a way to arrive at better-adapted onion varieties
The search for varieties that are better adapted to organic farming is a current topic in the organic sector. Breeding programmes specific for organic agriculture should solve this problem. Collaborating with organic farmers in such programmes, particularly in the selection process, can potentially result in varieties better adapted to their needs. Here, we assume that organic farmers' perceptive of plant health is broader than that of conventional breeders. Two organic onion farmers and one conventional onion breeder were monitored in their selection activities in 2004 and 2005 in order to verify whether and in which way this broader view on plant health contributes to improvement of organic varieties.
They made selections by positive mass selection in three segregating populations under organic conditions. The monitoring showed that the organic farmers selected in the field for earliness and downy mildew and after storage for bulb characteristics. The conventional breeder selected only after storage. Farmers and breeder applied identical selection directions for bulb traits as a round shape, better hardness and skin firmness. This resulted in smaller bulbs in the breeders’ populations, while the bulbs in the farmer populations were bigger than in the original population. In 2006 and 2007 the new onion populations will be compared with each other and the original populations to determine the selection response
Highly-ordered graphene for two dimensional electronics
With expanding interest in graphene-based electronics, it is crucial that
high quality graphene films be grown. Sublimation of Si from the 4H-SiC(0001)
Si-terminated) surface in ultrahigh vacuum is a demonstrated method to produce
epitaxial graphene sheets on a semiconductor. In this paper we show that
graphene grown from the SiC (C-terminated) surface are of higher
quality than those previously grown on SiC(0001). Graphene grown on the C-face
can have structural domain sizes more than three times larger than those grown
on the Si-face while at the same time reducing SiC substrate disorder from
sublimation by an order of magnitude.Comment: Submitted to Appl. Phys. Let
Electronic Cooling via Interlayer Coulomb Coupling in Multilayer Epitaxial Graphene
In van der Waals bonded or rotationally disordered multilayer stacks of
two-dimensional (2D) materials, the electronic states remain tightly confined
within individual 2D layers. As a result, electron-phonon interactions occur
primarily within layers and interlayer electrical conductivities are low. In
addition, strong covalent in-plane intralayer bonding combined with weak van
der Waals interlayer bonding results in weak phonon-mediated thermal coupling
between the layers. We demonstrate here, however, that Coulomb interactions
between electrons in different layers of multilayer epitaxial graphene provide
an important mechanism for interlayer thermal transport even though all
electronic states are strongly confined within individual 2D layers. This
effect is manifested in the relaxation dynamics of hot carriers in ultrafast
time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb
coupling containing no free parameters that accounts for the experimentally
observed trends in hot-carrier dynamics as temperature and the number of layers
is varied.Comment: 54 pages, 15 figures, uses documentclass{achemso}, M.T.M. and J.R.T.
contributed equally to this wor
Magnetoplasmons in quasi-neutral epitaxial graphene nanoribbons
We present infrared transmission spectroscopy study of the inter-Landau-level
excitations in quasi-neutral epitaxial graphene nanoribbon arrays. We observed
a substantial deviation in energy of the transition
from the characteristic square root magnetic-field dependence of
two-dimensional graphene. This deviation arises from the formation of
upper-hybrid mode between the Landau level transition and the plasmon
resonance. In the quantum regime the hybrid mode exhibits a distinct dispersion
relation, markedly different from that expected for conventional
two-dimensional systems and highly doped graphene
SAVAH: Source address validation with Host Identity Protocol
Abstract. Explosive growth of the Internet and lack of mechanisms that validate the authenticity of a packet source produced serious security and accounting issues. In this paper, we propose validating source addresses in LAN using Host Identity Protocol (HIP) deployed in a first-hop router. Compared to alternative solutions such as CGA, our approach is suitable both for IPv4 and IPv6. We have implemented SAVAH in Wi-Fi access points and evaluated its overhead for clients and the first-hop router
How harmonic is dipole resonance of metal clusters?
We discuss the degree of anharmonicity of dipole plasmon resonances in metal
clusters. We employ the time-dependent variational principle and show that the
relative shift of the second phonon scales as in energy, being
the number of particles. This scaling property coincides with that for nuclear
giant resonances. Contrary to the previous study based on the boson-expansion
method, the deviation from the harmonic limit is found to be almost negligible
for Na clusters, the result being consistent with the recent experimental
observation.Comment: RevTex, 8 page
Raman Topography and Strain Uniformity of Large-Area Epitaxial Graphene
We report results from two-dimensional Raman spectroscopy studies of
large-area epitaxial graphene grown on SiC. Our work reveals unexpectedly large
variation in Raman peak position across the sample resulting from inhomogeneity
in the strain of the graphene film, which we show to be correlated with
physical topography by coupling Raman spectroscopy with atomic force
microscopy. We report that essentially strain free graphene is possible even
for epitaxial graphene.Comment: 10 pages, 3 figure
The barocaloric effect: A Spin-off of the Discovery of High-Temperature Superconductivity
Some key results obtained in joint research projects with Alex M\"uller are
summarized, concentrating on the invention of the barocaloric effect and its
application for cooling as well as on important findings in the field of
high-temperature superconductivity resulting from neutron scattering
experiments.Comment: 26 pages, 9 figure
- …